import { isInteger } from '../../utils/number.js'; import { factory } from '../../utils/factory.js'; import { createSimplifyConstant } from './simplify/simplifyConstant.js'; var name = 'rationalize'; var dependencies = ['config', 'typed', 'equal', 'isZero', 'add', 'subtract', 'multiply', 'divide', 'pow', 'parse', 'simplifyCore', 'simplify', '?bignumber', '?fraction', 'mathWithTransform', 'matrix', 'AccessorNode', 'ArrayNode', 'ConstantNode', 'FunctionNode', 'IndexNode', 'ObjectNode', 'OperatorNode', 'SymbolNode', 'ParenthesisNode']; export var createRationalize = /* #__PURE__ */factory(name, dependencies, _ref => { var { config, typed, equal, isZero, add, subtract, multiply, divide, pow, parse, simplifyCore, simplify, fraction, bignumber, mathWithTransform, matrix, AccessorNode, ArrayNode, ConstantNode, FunctionNode, IndexNode, ObjectNode, OperatorNode, SymbolNode, ParenthesisNode } = _ref; var simplifyConstant = createSimplifyConstant({ typed, config, mathWithTransform, matrix, fraction, bignumber, AccessorNode, ArrayNode, ConstantNode, FunctionNode, IndexNode, ObjectNode, OperatorNode, SymbolNode }); /** * Transform a rationalizable expression in a rational fraction. * If rational fraction is one variable polynomial then converts * the numerator and denominator in canonical form, with decreasing * exponents, returning the coefficients of numerator. * * Syntax: * * rationalize(expr) * rationalize(expr, detailed) * rationalize(expr, scope) * rationalize(expr, scope, detailed) * * Examples: * * math.rationalize('sin(x)+y') * // Error: There is an unsolved function call * math.rationalize('2x/y - y/(x+1)') * // (2*x^2-y^2+2*x)/(x*y+y) * math.rationalize('(2x+1)^6') * // 64*x^6+192*x^5+240*x^4+160*x^3+60*x^2+12*x+1 * math.rationalize('2x/( (2x-1) / (3x+2) ) - 5x/ ( (3x+4) / (2x^2-5) ) + 3') * // -20*x^4+28*x^3+104*x^2+6*x-12)/(6*x^2+5*x-4) * math.rationalize('x/(1-x)/(x-2)/(x-3)/(x-4) + 2x/ ( (1-2x)/(2-3x) )/ ((3-4x)/(4-5x) )') = * // (-30*x^7+344*x^6-1506*x^5+3200*x^4-3472*x^3+1846*x^2-381*x)/ * // (-8*x^6+90*x^5-383*x^4+780*x^3-797*x^2+390*x-72) * * math.rationalize('x+x+x+y',{y:1}) // 3*x+1 * math.rationalize('x+x+x+y',{}) // 3*x+y * * const ret = math.rationalize('x+x+x+y',{},true) * // ret.expression=3*x+y, ret.variables = ["x","y"] * const ret = math.rationalize('-2+5x^2',{},true) * // ret.expression=5*x^2-2, ret.variables = ["x"], ret.coefficients=[-2,0,5] * * See also: * * simplify * * @param {Node|string} expr The expression to check if is a polynomial expression * @param {Object|boolean} optional scope of expression or true for already evaluated rational expression at input * @param {Boolean} detailed optional True if return an object, false if return expression node (default) * * @return {Object | Node} The rational polynomial of `expr` or an object * `{expression, numerator, denominator, variables, coefficients}`, where * `expression` is a `Node` with the node simplified expression, * `numerator` is a `Node` with the simplified numerator of expression, * `denominator` is a `Node` or `boolean` with the simplified denominator or `false` (if there is no denominator), * `variables` is an array with variable names, * and `coefficients` is an array with coefficients of numerator sorted by increased exponent * {Expression Node} node simplified expression * */ return typed(name, { string: function string(expr) { return this(parse(expr), {}, false); }, 'string, boolean': function stringBoolean(expr, detailed) { return this(parse(expr), {}, detailed); }, 'string, Object': function stringObject(expr, scope) { return this(parse(expr), scope, false); }, 'string, Object, boolean': function stringObjectBoolean(expr, scope, detailed) { return this(parse(expr), scope, detailed); }, Node: function Node(expr) { return this(expr, {}, false); }, 'Node, boolean': function NodeBoolean(expr, detailed) { return this(expr, {}, detailed); }, 'Node, Object': function NodeObject(expr, scope) { return this(expr, scope, false); }, 'Node, Object, boolean': function NodeObjectBoolean(expr, scope, detailed) { var setRules = rulesRationalize(); // Rules for change polynomial in near canonical form var polyRet = polynomial(expr, scope, true, setRules.firstRules); // Check if expression is a rationalizable polynomial var nVars = polyRet.variables.length; var noExactFractions = { exactFractions: false }; var withExactFractions = { exactFractions: true }; expr = polyRet.expression; if (nVars >= 1) { // If expression in not a constant expr = expandPower(expr); // First expand power of polynomials (cannot be made from rules!) var sBefore; // Previous expression var rules; var eDistrDiv = true; var redoInic = false; // Apply the initial rules, including succ div rules: expr = simplify(expr, setRules.firstRules, {}, noExactFractions); var s; while (true) { // Alternate applying successive division rules and distr.div.rules // until there are no more changes: rules = eDistrDiv ? setRules.distrDivRules : setRules.sucDivRules; expr = simplify(expr, rules, {}, withExactFractions); eDistrDiv = !eDistrDiv; // Swap between Distr.Div and Succ. Div. Rules s = expr.toString(); if (s === sBefore) { break; // No changes : end of the loop } redoInic = true; sBefore = s; } if (redoInic) { // Apply first rules again without succ div rules (if there are changes) expr = simplify(expr, setRules.firstRulesAgain, {}, noExactFractions); } // Apply final rules: expr = simplify(expr, setRules.finalRules, {}, noExactFractions); } // NVars >= 1 var coefficients = []; var retRationalize = {}; if (expr.type === 'OperatorNode' && expr.isBinary() && expr.op === '/') { // Separate numerator from denominator if (nVars === 1) { expr.args[0] = polyToCanonical(expr.args[0], coefficients); expr.args[1] = polyToCanonical(expr.args[1]); } if (detailed) { retRationalize.numerator = expr.args[0]; retRationalize.denominator = expr.args[1]; } } else { if (nVars === 1) { expr = polyToCanonical(expr, coefficients); } if (detailed) { retRationalize.numerator = expr; retRationalize.denominator = null; } } // nVars if (!detailed) return expr; retRationalize.coefficients = coefficients; retRationalize.variables = polyRet.variables; retRationalize.expression = expr; return retRationalize; } // ^^^^^^^ end of rationalize ^^^^^^^^ }); // end of typed rationalize /** * Function to simplify an expression using an optional scope and * return it if the expression is a polynomial expression, i.e. * an expression with one or more variables and the operators * +, -, *, and ^, where the exponent can only be a positive integer. * * Syntax: * * polynomial(expr,scope,extended, rules) * * @param {Node | string} expr The expression to simplify and check if is polynomial expression * @param {object} scope Optional scope for expression simplification * @param {boolean} extended Optional. Default is false. When true allows divide operator. * @param {array} rules Optional. Default is no rule. * * * @return {Object} * {Object} node: node simplified expression * {Array} variables: variable names */ function polynomial(expr, scope, extended, rules) { var variables = []; var node = simplify(expr, rules, scope, { exactFractions: false }); // Resolves any variables and functions with all defined parameters extended = !!extended; var oper = '+-*' + (extended ? '/' : ''); recPoly(node); var retFunc = {}; retFunc.expression = node; retFunc.variables = variables; return retFunc; // ------------------------------------------------------------------------------------------------------- /** * Function to simplify an expression using an optional scope and * return it if the expression is a polynomial expression, i.e. * an expression with one or more variables and the operators * +, -, *, and ^, where the exponent can only be a positive integer. * * Syntax: * * recPoly(node) * * * @param {Node} node The current sub tree expression in recursion * * @return nothing, throw an exception if error */ function recPoly(node) { var tp = node.type; // node type if (tp === 'FunctionNode') { // No function call in polynomial expression throw new Error('There is an unsolved function call'); } else if (tp === 'OperatorNode') { if (node.op === '^') { // TODO: handle negative exponents like in '1/x^(-2)' if (node.args[1].type !== 'ConstantNode' || !isInteger(parseFloat(node.args[1].value))) { throw new Error('There is a non-integer exponent'); } else { recPoly(node.args[0]); } } else { if (oper.indexOf(node.op) === -1) { throw new Error('Operator ' + node.op + ' invalid in polynomial expression'); } for (var i = 0; i < node.args.length; i++) { recPoly(node.args[i]); } } // type of operator } else if (tp === 'SymbolNode') { var _name = node.name; // variable name var pos = variables.indexOf(_name); if (pos === -1) { // new variable in expression variables.push(_name); } } else if (tp === 'ParenthesisNode') { recPoly(node.content); } else if (tp !== 'ConstantNode') { throw new Error('type ' + tp + ' is not allowed in polynomial expression'); } } // end of recPoly } // end of polynomial // --------------------------------------------------------------------------------------- /** * Return a rule set to rationalize an polynomial expression in rationalize * * Syntax: * * rulesRationalize() * * @return {array} rule set to rationalize an polynomial expression */ function rulesRationalize() { var oldRules = [simplifyCore, // sCore { l: 'n+n', r: '2*n' }, { l: 'n+-n', r: '0' }, simplifyConstant, // sConstant { l: 'n*(n1^-1)', r: 'n/n1' }, { l: 'n*n1^-n2', r: 'n/n1^n2' }, { l: 'n1^-1', r: '1/n1' }, { l: 'n*(n1/n2)', r: '(n*n1)/n2' }, { l: '1*n', r: 'n' }]; var rulesFirst = [{ l: '(-n1)/(-n2)', r: 'n1/n2' }, // Unary division { l: '(-n1)*(-n2)', r: 'n1*n2' }, // Unary multiplication { l: 'n1--n2', r: 'n1+n2' }, // '--' elimination { l: 'n1-n2', r: 'n1+(-n2)' }, // Subtraction turn into add with un�ry minus { l: '(n1+n2)*n3', r: '(n1*n3 + n2*n3)' }, // Distributive 1 { l: 'n1*(n2+n3)', r: '(n1*n2+n1*n3)' }, // Distributive 2 { l: 'c1*n + c2*n', r: '(c1+c2)*n' }, // Joining constants { l: 'c1*n + n', r: '(c1+1)*n' }, // Joining constants { l: 'c1*n - c2*n', r: '(c1-c2)*n' }, // Joining constants { l: 'c1*n - n', r: '(c1-1)*n' }, // Joining constants { l: 'v/c', r: '(1/c)*v' }, // variable/constant (new!) { l: 'v/-c', r: '-(1/c)*v' }, // variable/constant (new!) { l: '-v*-c', r: 'c*v' }, // Inversion constant and variable 1 { l: '-v*c', r: '-c*v' }, // Inversion constant and variable 2 { l: 'v*-c', r: '-c*v' }, // Inversion constant and variable 3 { l: 'v*c', r: 'c*v' }, // Inversion constant and variable 4 { l: '-(-n1*n2)', r: '(n1*n2)' }, // Unary propagation { l: '-(n1*n2)', r: '(-n1*n2)' }, // Unary propagation { l: '-(-n1+n2)', r: '(n1-n2)' }, // Unary propagation { l: '-(n1+n2)', r: '(-n1-n2)' }, // Unary propagation { l: '(n1^n2)^n3', r: '(n1^(n2*n3))' }, // Power to Power { l: '-(-n1/n2)', r: '(n1/n2)' }, // Division and Unary { l: '-(n1/n2)', r: '(-n1/n2)' }]; // Divisao and Unary var rulesDistrDiv = [{ l: '(n1/n2 + n3/n4)', r: '((n1*n4 + n3*n2)/(n2*n4))' }, // Sum of fractions { l: '(n1/n2 + n3)', r: '((n1 + n3*n2)/n2)' }, // Sum fraction with number 1 { l: '(n1 + n2/n3)', r: '((n1*n3 + n2)/n3)' }]; // Sum fraction with number 1 var rulesSucDiv = [{ l: '(n1/(n2/n3))', r: '((n1*n3)/n2)' }, // Division simplification { l: '(n1/n2/n3)', r: '(n1/(n2*n3))' }]; var setRules = {}; // rules set in 4 steps. // All rules => infinite loop // setRules.allRules =oldRules.concat(rulesFirst,rulesDistrDiv,rulesSucDiv) setRules.firstRules = oldRules.concat(rulesFirst, rulesSucDiv); // First rule set setRules.distrDivRules = rulesDistrDiv; // Just distr. div. rules setRules.sucDivRules = rulesSucDiv; // Jus succ. div. rules setRules.firstRulesAgain = oldRules.concat(rulesFirst); // Last rules set without succ. div. // Division simplification // Second rule set. // There is no aggregate expression with parentesis, but the only variable can be scattered. setRules.finalRules = [simplifyCore, // simplify.rules[0] { l: 'n*-n', r: '-n^2' }, // Joining multiply with power 1 { l: 'n*n', r: 'n^2' }, // Joining multiply with power 2 simplifyConstant, // simplify.rules[14] old 3rd index in oldRules { l: 'n*-n^n1', r: '-n^(n1+1)' }, // Joining multiply with power 3 { l: 'n*n^n1', r: 'n^(n1+1)' }, // Joining multiply with power 4 { l: 'n^n1*-n^n2', r: '-n^(n1+n2)' }, // Joining multiply with power 5 { l: 'n^n1*n^n2', r: 'n^(n1+n2)' }, // Joining multiply with power 6 { l: 'n^n1*-n', r: '-n^(n1+1)' }, // Joining multiply with power 7 { l: 'n^n1*n', r: 'n^(n1+1)' }, // Joining multiply with power 8 { l: 'n^n1/-n', r: '-n^(n1-1)' }, // Joining multiply with power 8 { l: 'n^n1/n', r: 'n^(n1-1)' }, // Joining division with power 1 { l: 'n/-n^n1', r: '-n^(1-n1)' }, // Joining division with power 2 { l: 'n/n^n1', r: 'n^(1-n1)' }, // Joining division with power 3 { l: 'n^n1/-n^n2', r: 'n^(n1-n2)' }, // Joining division with power 4 { l: 'n^n1/n^n2', r: 'n^(n1-n2)' }, // Joining division with power 5 { l: 'n1+(-n2*n3)', r: 'n1-n2*n3' }, // Solving useless parenthesis 1 { l: 'v*(-c)', r: '-c*v' }, // Solving useless unary 2 { l: 'n1+-n2', r: 'n1-n2' }, // Solving +- together (new!) { l: 'v*c', r: 'c*v' }, // inversion constant with variable { l: '(n1^n2)^n3', r: '(n1^(n2*n3))' } // Power to Power ]; return setRules; } // End rulesRationalize // --------------------------------------------------------------------------------------- /** * Expand recursively a tree node for handling with expressions with exponents * (it's not for constants, symbols or functions with exponents) * PS: The other parameters are internal for recursion * * Syntax: * * expandPower(node) * * @param {Node} node Current expression node * @param {node} parent Parent current node inside the recursion * @param (int} Parent number of chid inside the rercursion * * @return {node} node expression with all powers expanded. */ function expandPower(node, parent, indParent) { var tp = node.type; var internal = arguments.length > 1; // TRUE in internal calls if (tp === 'OperatorNode' && node.isBinary()) { var does = false; var val; if (node.op === '^') { // First operator: Parenthesis or UnaryMinus if ((node.args[0].type === 'ParenthesisNode' || node.args[0].type === 'OperatorNode') && node.args[1].type === 'ConstantNode') { // Second operator: Constant val = parseFloat(node.args[1].value); does = val >= 2 && isInteger(val); } } if (does) { // Exponent >= 2 // Before: // operator A --> Subtree // parent pow // constant // if (val > 2) { // Exponent > 2, // AFTER: (exponent > 2) // operator A --> Subtree // parent * // deep clone (operator A --> Subtree // pow // constant - 1 // var nEsqTopo = node.args[0]; var nDirTopo = new OperatorNode('^', 'pow', [node.args[0].cloneDeep(), new ConstantNode(val - 1)]); node = new OperatorNode('*', 'multiply', [nEsqTopo, nDirTopo]); } else { // Expo = 2 - no power // AFTER: (exponent = 2) // operator A --> Subtree // parent oper // deep clone (operator A --> Subtree) // node = new OperatorNode('*', 'multiply', [node.args[0], node.args[0].cloneDeep()]); } if (internal) { // Change parent references in internal recursive calls if (indParent === 'content') { parent.content = node; } else { parent.args[indParent] = node; } } } // does } // binary OperatorNode if (tp === 'ParenthesisNode') { // Recursion expandPower(node.content, node, 'content'); } else if (tp !== 'ConstantNode' && tp !== 'SymbolNode') { for (var i = 0; i < node.args.length; i++) { expandPower(node.args[i], node, i); } } if (!internal) { // return the root node return node; } } // End expandPower // --------------------------------------------------------------------------------------- /** * Auxilary function for rationalize * Convert near canonical polynomial in one variable in a canonical polynomial * with one term for each exponent in decreasing order * * Syntax: * * polyToCanonical(node [, coefficients]) * * @param {Node | string} expr The near canonical polynomial expression to convert in a a canonical polynomial expression * * The string or tree expression needs to be at below syntax, with free spaces: * ( (^(-)? | [+-]? )cte (*)? var (^expo)? | cte )+ * Where 'var' is one variable with any valid name * 'cte' are real numeric constants with any value. It can be omitted if equal than 1 * 'expo' are integers greater than 0. It can be omitted if equal than 1. * * @param {array} coefficients Optional returns coefficients sorted by increased exponent * * * @return {node} new node tree with one variable polynomial or string error. */ function polyToCanonical(node, coefficients) { if (coefficients === undefined) { coefficients = []; } // coefficients. coefficients[0] = 0; // index is the exponent var o = {}; o.cte = 1; o.oper = '+'; // fire: mark with * or ^ when finds * or ^ down tree, reset to "" with + and -. // It is used to deduce the exponent: 1 for *, 0 for "". o.fire = ''; var maxExpo = 0; // maximum exponent var varname = ''; // variable name recurPol(node, null, o); maxExpo = coefficients.length - 1; var first = true; var no; for (var i = maxExpo; i >= 0; i--) { if (coefficients[i] === 0) continue; var n1 = new ConstantNode(first ? coefficients[i] : Math.abs(coefficients[i])); var op = coefficients[i] < 0 ? '-' : '+'; if (i > 0) { // Is not a constant without variable var n2 = new SymbolNode(varname); if (i > 1) { var n3 = new ConstantNode(i); n2 = new OperatorNode('^', 'pow', [n2, n3]); } if (coefficients[i] === -1 && first) { n1 = new OperatorNode('-', 'unaryMinus', [n2]); } else if (Math.abs(coefficients[i]) === 1) { n1 = n2; } else { n1 = new OperatorNode('*', 'multiply', [n1, n2]); } } if (first) { no = n1; } else if (op === '+') { no = new OperatorNode('+', 'add', [no, n1]); } else { no = new OperatorNode('-', 'subtract', [no, n1]); } first = false; } // for if (first) { return new ConstantNode(0); } else { return no; } /** * Recursive auxilary function inside polyToCanonical for * converting expression in canonical form * * Syntax: * * recurPol(node, noPai, obj) * * @param {Node} node The current subpolynomial expression * @param {Node | Null} noPai The current parent node * @param {object} obj Object with many internal flags * * @return {} No return. If error, throws an exception */ function recurPol(node, noPai, o) { var tp = node.type; if (tp === 'FunctionNode') { // ***** FunctionName ***** // No function call in polynomial expression throw new Error('There is an unsolved function call'); } else if (tp === 'OperatorNode') { // ***** OperatorName ***** if ('+-*^'.indexOf(node.op) === -1) throw new Error('Operator ' + node.op + ' invalid'); if (noPai !== null) { // -(unary),^ : children of *,+,- if ((node.fn === 'unaryMinus' || node.fn === 'pow') && noPai.fn !== 'add' && noPai.fn !== 'subtract' && noPai.fn !== 'multiply') { throw new Error('Invalid ' + node.op + ' placing'); } // -,+,* : children of +,- if ((node.fn === 'subtract' || node.fn === 'add' || node.fn === 'multiply') && noPai.fn !== 'add' && noPai.fn !== 'subtract') { throw new Error('Invalid ' + node.op + ' placing'); } // -,+ : first child if ((node.fn === 'subtract' || node.fn === 'add' || node.fn === 'unaryMinus') && o.noFil !== 0) { throw new Error('Invalid ' + node.op + ' placing'); } } // Has parent // Firers: ^,* Old: ^,&,-(unary): firers if (node.op === '^' || node.op === '*') { o.fire = node.op; } for (var _i = 0; _i < node.args.length; _i++) { // +,-: reset fire if (node.fn === 'unaryMinus') o.oper = '-'; if (node.op === '+' || node.fn === 'subtract') { o.fire = ''; o.cte = 1; // default if there is no constant o.oper = _i === 0 ? '+' : node.op; } o.noFil = _i; // number of son recurPol(node.args[_i], node, o); } // for in children } else if (tp === 'SymbolNode') { // ***** SymbolName ***** if (node.name !== varname && varname !== '') { throw new Error('There is more than one variable'); } varname = node.name; if (noPai === null) { coefficients[1] = 1; return; } // ^: Symbol is First child if (noPai.op === '^' && o.noFil !== 0) { throw new Error('In power the variable should be the first parameter'); } // *: Symbol is Second child if (noPai.op === '*' && o.noFil !== 1) { throw new Error('In multiply the variable should be the second parameter'); } // Symbol: firers '',* => it means there is no exponent above, so it's 1 (cte * var) if (o.fire === '' || o.fire === '*') { if (maxExpo < 1) coefficients[1] = 0; coefficients[1] += o.cte * (o.oper === '+' ? 1 : -1); maxExpo = Math.max(1, maxExpo); } } else if (tp === 'ConstantNode') { var valor = parseFloat(node.value); if (noPai === null) { coefficients[0] = valor; return; } if (noPai.op === '^') { // cte: second child of power if (o.noFil !== 1) throw new Error('Constant cannot be powered'); if (!isInteger(valor) || valor <= 0) { throw new Error('Non-integer exponent is not allowed'); } for (var _i2 = maxExpo + 1; _i2 < valor; _i2++) { coefficients[_i2] = 0; } if (valor > maxExpo) coefficients[valor] = 0; coefficients[valor] += o.cte * (o.oper === '+' ? 1 : -1); maxExpo = Math.max(valor, maxExpo); return; } o.cte = valor; // Cte: firer '' => There is no exponent and no multiplication, so the exponent is 0. if (o.fire === '') { coefficients[0] += o.cte * (o.oper === '+' ? 1 : -1); } } else { throw new Error('Type ' + tp + ' is not allowed'); } } // End of recurPol } // End of polyToCanonical });