import { isMatrix } from '../../utils/is.js'; import { arraySize } from '../../utils/array.js'; import { factory } from '../../utils/factory.js'; import { format } from '../../utils/string.js'; var name = 'inv'; var dependencies = ['typed', 'matrix', 'divideScalar', 'addScalar', 'multiply', 'unaryMinus', 'det', 'identity', 'abs']; export var createInv = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, matrix, divideScalar, addScalar, multiply, unaryMinus, det, identity, abs } = _ref; /** * Calculate the inverse of a square matrix. * * Syntax: * * math.inv(x) * * Examples: * * math.inv([[1, 2], [3, 4]]) // returns [[-2, 1], [1.5, -0.5]] * math.inv(4) // returns 0.25 * 1 / 4 // returns 0.25 * * See also: * * det, transpose * * @param {number | Complex | Array | Matrix} x Matrix to be inversed * @return {number | Complex | Array | Matrix} The inverse of `x`. */ return typed(name, { 'Array | Matrix': function ArrayMatrix(x) { var size = isMatrix(x) ? x.size() : arraySize(x); switch (size.length) { case 1: // vector if (size[0] === 1) { if (isMatrix(x)) { return matrix([divideScalar(1, x.valueOf()[0])]); } else { return [divideScalar(1, x[0])]; } } else { throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')'); } case 2: // two dimensional array { var rows = size[0]; var cols = size[1]; if (rows === cols) { if (isMatrix(x)) { return matrix(_inv(x.valueOf(), rows, cols), x.storage()); } else { // return an Array return _inv(x, rows, cols); } } else { throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')'); } } default: // multi dimensional array throw new RangeError('Matrix must be two dimensional ' + '(size: ' + format(size) + ')'); } }, any: function any(x) { // scalar return divideScalar(1, x); // FIXME: create a BigNumber one when configured for bignumbers } }); /** * Calculate the inverse of a square matrix * @param {Array[]} mat A square matrix * @param {number} rows Number of rows * @param {number} cols Number of columns, must equal rows * @return {Array[]} inv Inverse matrix * @private */ function _inv(mat, rows, cols) { var r, s, f, value, temp; if (rows === 1) { // this is a 1 x 1 matrix value = mat[0][0]; if (value === 0) { throw Error('Cannot calculate inverse, determinant is zero'); } return [[divideScalar(1, value)]]; } else if (rows === 2) { // this is a 2 x 2 matrix var d = det(mat); if (d === 0) { throw Error('Cannot calculate inverse, determinant is zero'); } return [[divideScalar(mat[1][1], d), divideScalar(unaryMinus(mat[0][1]), d)], [divideScalar(unaryMinus(mat[1][0]), d), divideScalar(mat[0][0], d)]]; } else { // this is a matrix of 3 x 3 or larger // calculate inverse using gauss-jordan elimination // https://en.wikipedia.org/wiki/Gaussian_elimination // http://mathworld.wolfram.com/MatrixInverse.html // http://math.uww.edu/~mcfarlat/inverse.htm // make a copy of the matrix (only the arrays, not of the elements) var A = mat.concat(); for (r = 0; r < rows; r++) { A[r] = A[r].concat(); } // create an identity matrix which in the end will contain the // matrix inverse var B = identity(rows).valueOf(); // loop over all columns, and perform row reductions for (var c = 0; c < cols; c++) { // Pivoting: Swap row c with row r, where row r contains the largest element A[r][c] var ABig = abs(A[c][c]); var rBig = c; r = c + 1; while (r < rows) { if (abs(A[r][c]) > ABig) { ABig = abs(A[r][c]); rBig = r; } r++; } if (ABig === 0) { throw Error('Cannot calculate inverse, determinant is zero'); } r = rBig; if (r !== c) { temp = A[c]; A[c] = A[r]; A[r] = temp; temp = B[c]; B[c] = B[r]; B[r] = temp; } // eliminate non-zero values on the other rows at column c var Ac = A[c]; var Bc = B[c]; for (r = 0; r < rows; r++) { var Ar = A[r]; var Br = B[r]; if (r !== c) { // eliminate value at column c and row r if (Ar[c] !== 0) { f = divideScalar(unaryMinus(Ar[c]), Ac[c]); // add (f * row c) to row r to eliminate the value // at column c for (s = c; s < cols; s++) { Ar[s] = addScalar(Ar[s], multiply(f, Ac[s])); } for (s = 0; s < cols; s++) { Br[s] = addScalar(Br[s], multiply(f, Bc[s])); } } } else { // normalize value at Acc to 1, // divide each value on row r with the value at Acc f = Ac[c]; for (s = c; s < cols; s++) { Ar[s] = divideScalar(Ar[s], f); } for (s = 0; s < cols; s++) { Br[s] = divideScalar(Br[s], f); } } } } return B; } } });