import { factory } from '../../utils/factory.js'; import { createAlgorithm01 } from '../../type/matrix/utils/algorithm01.js'; import { createAlgorithm02 } from '../../type/matrix/utils/algorithm02.js'; import { createAlgorithm06 } from '../../type/matrix/utils/algorithm06.js'; import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11.js'; import { createAlgorithm13 } from '../../type/matrix/utils/algorithm13.js'; import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14.js'; import { nthRootNumber } from '../../plain/number/index.js'; var name = 'nthRoot'; var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber']; export var createNthRoot = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, matrix, equalScalar, BigNumber: _BigNumber } = _ref; var algorithm01 = createAlgorithm01({ typed }); var algorithm02 = createAlgorithm02({ typed, equalScalar }); var algorithm06 = createAlgorithm06({ typed, equalScalar }); var algorithm11 = createAlgorithm11({ typed, equalScalar }); var algorithm13 = createAlgorithm13({ typed }); var algorithm14 = createAlgorithm14({ typed }); /** * Calculate the nth root of a value. * The principal nth root of a positive real number A, is the positive real * solution of the equation * * x^root = A * * For matrices, the function is evaluated element wise. * * Syntax: * * math.nthRoot(a) * math.nthRoot(a, root) * * Examples: * * math.nthRoot(9, 2) // returns 3, as 3^2 == 9 * math.sqrt(9) // returns 3, as 3^2 == 9 * math.nthRoot(64, 3) // returns 4, as 4^3 == 64 * * See also: * * sqrt, pow * * @param {number | BigNumber | Array | Matrix | Complex} a * Value for which to calculate the nth root * @param {number | BigNumber} [root=2] The root. * @return {number | Complex | Array | Matrix} Returns the nth root of `a` */ var complexErr = '' + 'Complex number not supported in function nthRoot. ' + 'Use nthRoots instead.'; return typed(name, { number: function number(x) { return nthRootNumber(x, 2); }, 'number, number': nthRootNumber, BigNumber: function BigNumber(x) { return _bigNthRoot(x, new _BigNumber(2)); }, Complex: function Complex(x) { throw new Error(complexErr); }, 'Complex, number': function ComplexNumber(x, y) { throw new Error(complexErr); }, 'BigNumber, BigNumber': _bigNthRoot, 'Array | Matrix': function ArrayMatrix(x) { return this(x, 2); }, 'SparseMatrix, SparseMatrix': function SparseMatrixSparseMatrix(x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse + sparse return algorithm06(x, y, this); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'SparseMatrix, DenseMatrix': function SparseMatrixDenseMatrix(x, y) { return algorithm02(y, x, this, true); }, 'DenseMatrix, SparseMatrix': function DenseMatrixSparseMatrix(x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // dense + sparse return algorithm01(x, y, this, false); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'DenseMatrix, DenseMatrix': function DenseMatrixDenseMatrix(x, y) { return algorithm13(x, y, this); }, 'Array, Array': function ArrayArray(x, y) { // use matrix implementation return this(matrix(x), matrix(y)).valueOf(); }, 'Array, Matrix': function ArrayMatrix(x, y) { // use matrix implementation return this(matrix(x), y); }, 'Matrix, Array': function MatrixArray(x, y) { // use matrix implementation return this(x, matrix(y)); }, 'SparseMatrix, number | BigNumber': function SparseMatrixNumberBigNumber(x, y) { return algorithm11(x, y, this, false); }, 'DenseMatrix, number | BigNumber': function DenseMatrixNumberBigNumber(x, y) { return algorithm14(x, y, this, false); }, 'number | BigNumber, SparseMatrix': function numberBigNumberSparseMatrix(x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse - scalar return algorithm11(y, x, this, true); } else { // throw exception throw new Error('Root must be non-zero'); } }, 'number | BigNumber, DenseMatrix': function numberBigNumberDenseMatrix(x, y) { return algorithm14(y, x, this, true); }, 'Array, number | BigNumber': function ArrayNumberBigNumber(x, y) { // use matrix implementation return this(matrix(x), y).valueOf(); }, 'number | BigNumber, Array': function numberBigNumberArray(x, y) { // use matrix implementation return this(x, matrix(y)).valueOf(); } }); /** * Calculate the nth root of a for BigNumbers, solve x^root == a * https://rosettacode.org/wiki/Nth_root#JavaScript * @param {BigNumber} a * @param {BigNumber} root * @private */ function _bigNthRoot(a, root) { var precision = _BigNumber.precision; var Big = _BigNumber.clone({ precision: precision + 2 }); var zero = new _BigNumber(0); var one = new Big(1); var inv = root.isNegative(); if (inv) { root = root.neg(); } if (root.isZero()) { throw new Error('Root must be non-zero'); } if (a.isNegative() && !root.abs().mod(2).equals(1)) { throw new Error('Root must be odd when a is negative.'); } // edge cases zero and infinity if (a.isZero()) { return inv ? new Big(Infinity) : 0; } if (!a.isFinite()) { return inv ? zero : a; } var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a.isNeg() ? x.neg() : x; return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision)); } }); export var createNthRootNumber = /* #__PURE__ */factory(name, ['typed'], _ref2 => { var { typed } = _ref2; return typed(name, { number: nthRootNumber, 'number, number': nthRootNumber }); });