import { csReach } from './csReach.js'; import { factory } from '../../../utils/factory.js'; var name = 'csSpsolve'; var dependencies = ['divideScalar', 'multiply', 'subtract']; export var createCsSpsolve = /* #__PURE__ */factory(name, dependencies, _ref => { var { divideScalar, multiply, subtract } = _ref; /** * The function csSpsolve() computes the solution to G * x = bk, where bk is the * kth column of B. When lo is true, the function assumes G = L is lower triangular with the * diagonal entry as the first entry in each column. When lo is true, the function assumes G = U * is upper triangular with the diagonal entry as the last entry in each column. * * @param {Matrix} g The G matrix * @param {Matrix} b The B matrix * @param {Number} k The kth column in B * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n * The first n entries is the nonzero pattern, the last n entries is the stack * @param {Array} x The soluton to the linear system G * x = b * @param {Array} pinv The inverse row permutation vector, must be null for L * x = b * @param {boolean} lo The lower (true) upper triangular (false) flag * * @return {Number} The index for the nonzero pattern * * Reference: http://faculty.cse.tamu.edu/davis/publications.html */ return function csSpsolve(g, b, k, xi, x, pinv, lo) { // g arrays var gvalues = g._values; var gindex = g._index; var gptr = g._ptr; var gsize = g._size; // columns var n = gsize[1]; // b arrays var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; // vars var p, p0, p1, q; // xi[top..n-1] = csReach(B(:,k)) var top = csReach(g, b, k, xi, pinv); // clear x for (p = top; p < n; p++) { x[xi[p]] = 0; } // scatter b for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) { x[bindex[p]] = bvalues[p]; } // loop columns for (var px = top; px < n; px++) { // x array index for px var j = xi[px]; // apply permutation vector (U x = b), j maps to column J of G var J = pinv ? pinv[j] : j; // check column J is empty if (J < 0) { continue; } // column value indeces in G, p0 <= p < p1 p0 = gptr[J]; p1 = gptr[J + 1]; // x(j) /= G(j,j) x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]); // first entry L(j,j) p = lo ? p0 + 1 : p0; q = lo ? p1 : p1 - 1; // loop for (; p < q; p++) { // row var i = gindex[p]; // x(i) -= G(i,j) * x(j) x[i] = subtract(x[i], multiply(gvalues[p], x[j])); } } // return top of stack return top; }; });