simple-squiggle/node_modules/mathjs/lib/cjs/plain/number/probability.js

63 lines
1.8 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.gammaG = void 0;
exports.gammaNumber = gammaNumber;
exports.gammaP = void 0;
var _number = require("../../utils/number.js");
var _product = require("../../utils/product.js");
/* eslint-disable no-loss-of-precision */
function gammaNumber(n) {
var x;
if ((0, _number.isInteger)(n)) {
if (n <= 0) {
return isFinite(n) ? Infinity : NaN;
}
if (n > 171) {
return Infinity; // Will overflow
}
return (0, _product.product)(1, n - 1);
}
if (n < 0.5) {
return Math.PI / (Math.sin(Math.PI * n) * gammaNumber(1 - n));
}
if (n >= 171.35) {
return Infinity; // will overflow
}
if (n > 85.0) {
// Extended Stirling Approx
var twoN = n * n;
var threeN = twoN * n;
var fourN = threeN * n;
var fiveN = fourN * n;
return Math.sqrt(2 * Math.PI / n) * Math.pow(n / Math.E, n) * (1 + 1 / (12 * n) + 1 / (288 * twoN) - 139 / (51840 * threeN) - 571 / (2488320 * fourN) + 163879 / (209018880 * fiveN) + 5246819 / (75246796800 * fiveN * n));
}
--n;
x = gammaP[0];
for (var i = 1; i < gammaP.length; ++i) {
x += gammaP[i] / (n + i);
}
var t = n + gammaG + 0.5;
return Math.sqrt(2 * Math.PI) * Math.pow(t, n + 0.5) * Math.exp(-t) * x;
}
gammaNumber.signature = 'number'; // TODO: comment on the variables g and p
var gammaG = 4.7421875;
exports.gammaG = gammaG;
var gammaP = [0.99999999999999709182, 57.156235665862923517, -59.597960355475491248, 14.136097974741747174, -0.49191381609762019978, 0.33994649984811888699e-4, 0.46523628927048575665e-4, -0.98374475304879564677e-4, 0.15808870322491248884e-3, -0.21026444172410488319e-3, 0.21743961811521264320e-3, -0.16431810653676389022e-3, 0.84418223983852743293e-4, -0.26190838401581408670e-4, 0.36899182659531622704e-5];
exports.gammaP = gammaP;