simple-squiggle/node_modules/mathjs/lib/cjs/function/statistics/variance.js

173 lines
6.0 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createVariance = void 0;
var _collection = require("../../utils/collection.js");
var _is = require("../../utils/is.js");
var _factory = require("../../utils/factory.js");
var _improveErrorMessage = require("./utils/improveErrorMessage.js");
var DEFAULT_NORMALIZATION = 'unbiased';
var name = 'variance';
var dependencies = ['typed', 'add', 'subtract', 'multiply', 'divide', 'apply', 'isNaN'];
var createVariance = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
add = _ref.add,
subtract = _ref.subtract,
multiply = _ref.multiply,
divide = _ref.divide,
apply = _ref.apply,
isNaN = _ref.isNaN;
/**
* Compute the variance of a matrix or a list with values.
* In case of a (multi dimensional) array or matrix, the variance over all
* elements will be calculated.
*
* Additionally, it is possible to compute the variance along the rows
* or columns of a matrix by specifying the dimension as the second argument.
*
* Optionally, the type of normalization can be specified as the final
* parameter. The parameter `normalization` can be one of the following values:
*
* - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
*
*
* Note that older browser may not like the variable name `var`. In that
* case, the function can be called as `math['var'](...)` instead of
* `math.var(...)`.
*
* Syntax:
*
* math.variance(a, b, c, ...)
* math.variance(A)
* math.variance(A, normalization)
* math.variance(A, dimension)
* math.variance(A, dimension, normalization)
*
* Examples:
*
* math.variance(2, 4, 6) // returns 4
* math.variance([2, 4, 6, 8]) // returns 6.666666666666667
* math.variance([2, 4, 6, 8], 'uncorrected') // returns 5
* math.variance([2, 4, 6, 8], 'biased') // returns 4
*
* math.variance([[1, 2, 3], [4, 5, 6]]) // returns 3.5
* math.variance([[1, 2, 3], [4, 6, 8]], 0) // returns [4.5, 8, 12.5]
* math.variance([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 4]
* math.variance([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.5, 2]
*
* See also:
*
* mean, median, max, min, prod, std, sum
*
* @param {Array | Matrix} array
* A single matrix or or multiple scalar values
* @param {string} [normalization='unbiased']
* Determines how to normalize the variance.
* Choose 'unbiased' (default), 'uncorrected', or 'biased'.
* @param dimension {number | BigNumber}
* Determines the axis to compute the variance for a matrix
* @return {*} The variance
*/
return typed(name, {
// variance([a, b, c, d, ...])
'Array | Matrix': function ArrayMatrix(array) {
return _var(array, DEFAULT_NORMALIZATION);
},
// variance([a, b, c, d, ...], normalization)
'Array | Matrix, string': _var,
// variance([a, b, c, c, ...], dim)
'Array | Matrix, number | BigNumber': function ArrayMatrixNumberBigNumber(array, dim) {
return _varDim(array, dim, DEFAULT_NORMALIZATION);
},
// variance([a, b, c, c, ...], dim, normalization)
'Array | Matrix, number | BigNumber, string': _varDim,
// variance(a, b, c, d, ...)
'...': function _(args) {
return _var(args, DEFAULT_NORMALIZATION);
}
});
/**
* Recursively calculate the variance of an n-dimensional array
* @param {Array} array
* @param {string} normalization
* Determines how to normalize the variance:
* - 'unbiased' The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
* @return {number | BigNumber} variance
* @private
*/
function _var(array, normalization) {
var sum;
var num = 0;
if (array.length === 0) {
throw new SyntaxError('Function variance requires one or more parameters (0 provided)');
} // calculate the mean and number of elements
(0, _collection.deepForEach)(array, function (value) {
try {
sum = sum === undefined ? value : add(sum, value);
num++;
} catch (err) {
throw (0, _improveErrorMessage.improveErrorMessage)(err, 'variance', value);
}
});
if (num === 0) throw new Error('Cannot calculate variance of an empty array');
var mean = divide(sum, num); // calculate the variance
sum = undefined;
(0, _collection.deepForEach)(array, function (value) {
var diff = subtract(value, mean);
sum = sum === undefined ? multiply(diff, diff) : add(sum, multiply(diff, diff));
});
if (isNaN(sum)) {
return sum;
}
switch (normalization) {
case 'uncorrected':
return divide(sum, num);
case 'biased':
return divide(sum, num + 1);
case 'unbiased':
{
var zero = (0, _is.isBigNumber)(sum) ? sum.mul(0) : 0;
return num === 1 ? zero : divide(sum, num - 1);
}
default:
throw new Error('Unknown normalization "' + normalization + '". ' + 'Choose "unbiased" (default), "uncorrected", or "biased".');
}
}
function _varDim(array, dim, normalization) {
try {
if (array.length === 0) {
throw new SyntaxError('Function variance requires one or more parameters (0 provided)');
}
return apply(array, dim, function (x) {
return _var(x, normalization);
});
} catch (err) {
throw (0, _improveErrorMessage.improveErrorMessage)(err, 'variance');
}
}
});
exports.createVariance = createVariance;