simple-squiggle/node_modules/mathjs/lib/cjs/utils/number.js

756 lines
21 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.cosh = exports.cbrt = exports.atanh = exports.asinh = exports.acosh = exports.DBL_EPSILON = void 0;
exports.digits = digits;
exports.expm1 = void 0;
exports.format = format;
exports.isInteger = isInteger;
exports.log2 = exports.log1p = exports.log10 = void 0;
exports.nearlyEqual = nearlyEqual;
exports.roundDigits = roundDigits;
exports.sinh = exports.sign = void 0;
exports.splitNumber = splitNumber;
exports.tanh = void 0;
exports.toEngineering = toEngineering;
exports.toExponential = toExponential;
exports.toFixed = toFixed;
exports.toPrecision = toPrecision;
var _is = require("./is.js");
/**
* @typedef {{sign: '+' | '-' | '', coefficients: number[], exponent: number}} SplitValue
*/
/**
* Check if a number is integer
* @param {number | boolean} value
* @return {boolean} isInteger
*/
function isInteger(value) {
if (typeof value === 'boolean') {
return true;
}
return isFinite(value) ? value === Math.round(value) : false;
}
/**
* Calculate the sign of a number
* @param {number} x
* @returns {number}
*/
var sign = /* #__PURE__ */Math.sign || function (x) {
if (x > 0) {
return 1;
} else if (x < 0) {
return -1;
} else {
return 0;
}
};
/**
* Calculate the base-2 logarithm of a number
* @param {number} x
* @returns {number}
*/
exports.sign = sign;
var log2 = /* #__PURE__ */Math.log2 || function log2(x) {
return Math.log(x) / Math.LN2;
};
/**
* Calculate the base-10 logarithm of a number
* @param {number} x
* @returns {number}
*/
exports.log2 = log2;
var log10 = /* #__PURE__ */Math.log10 || function log10(x) {
return Math.log(x) / Math.LN10;
};
/**
* Calculate the natural logarithm of a number + 1
* @param {number} x
* @returns {number}
*/
exports.log10 = log10;
var log1p = /* #__PURE__ */Math.log1p || function (x) {
return Math.log(x + 1);
};
/**
* Calculate cubic root for a number
*
* Code from es6-shim.js:
* https://github.com/paulmillr/es6-shim/blob/master/es6-shim.js#L1564-L1577
*
* @param {number} x
* @returns {number} Returns the cubic root of x
*/
exports.log1p = log1p;
var cbrt = /* #__PURE__ */Math.cbrt || function cbrt(x) {
if (x === 0) {
return x;
}
var negate = x < 0;
var result;
if (negate) {
x = -x;
}
if (isFinite(x)) {
result = Math.exp(Math.log(x) / 3); // from https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
result = (x / (result * result) + 2 * result) / 3;
} else {
result = x;
}
return negate ? -result : result;
};
/**
* Calculates exponentiation minus 1
* @param {number} x
* @return {number} res
*/
exports.cbrt = cbrt;
var expm1 = /* #__PURE__ */Math.expm1 || function expm1(x) {
return x >= 2e-4 || x <= -2e-4 ? Math.exp(x) - 1 : x + x * x / 2 + x * x * x / 6;
};
/**
* Formats a number in a given base
* @param {number} n
* @param {number} base
* @param {number} size
* @returns {string}
*/
exports.expm1 = expm1;
function formatNumberToBase(n, base, size) {
var prefixes = {
2: '0b',
8: '0o',
16: '0x'
};
var prefix = prefixes[base];
var suffix = '';
if (size) {
if (size < 1) {
throw new Error('size must be in greater than 0');
}
if (!isInteger(size)) {
throw new Error('size must be an integer');
}
if (n > Math.pow(2, size - 1) - 1 || n < -Math.pow(2, size - 1)) {
throw new Error("Value must be in range [-2^".concat(size - 1, ", 2^").concat(size - 1, "-1]"));
}
if (!isInteger(n)) {
throw new Error('Value must be an integer');
}
if (n < 0) {
n = n + Math.pow(2, size);
}
suffix = "i".concat(size);
}
var sign = '';
if (n < 0) {
n = -n;
sign = '-';
}
return "".concat(sign).concat(prefix).concat(n.toString(base)).concat(suffix);
}
/**
* Convert a number to a formatted string representation.
*
* Syntax:
*
* format(value)
* format(value, options)
* format(value, precision)
* format(value, fn)
*
* Where:
*
* {number} value The value to be formatted
* {Object} options An object with formatting options. Available options:
* {string} notation
* Number notation. Choose from:
* 'fixed' Always use regular number notation.
* For example '123.40' and '14000000'
* 'exponential' Always use exponential notation.
* For example '1.234e+2' and '1.4e+7'
* 'engineering' Always use engineering notation.
* For example '123.4e+0' and '14.0e+6'
* 'auto' (default) Regular number notation for numbers
* having an absolute value between
* `lowerExp` and `upperExp` bounds, and
* uses exponential notation elsewhere.
* Lower bound is included, upper bound
* is excluded.
* For example '123.4' and '1.4e7'.
* 'bin', 'oct, or
* 'hex' Format the number using binary, octal,
* or hexadecimal notation.
* For example '0b1101' and '0x10fe'.
* {number} wordSize The word size in bits to use for formatting
* in binary, octal, or hexadecimal notation.
* To be used only with 'bin', 'oct', or 'hex'
* values for 'notation' option. When this option
* is defined the value is formatted as a signed
* twos complement integer of the given word size
* and the size suffix is appended to the output.
* For example
* format(-1, {notation: 'hex', wordSize: 8}) === '0xffi8'.
* Default value is undefined.
* {number} precision A number between 0 and 16 to round
* the digits of the number.
* In case of notations 'exponential',
* 'engineering', and 'auto',
* `precision` defines the total
* number of significant digits returned.
* In case of notation 'fixed',
* `precision` defines the number of
* significant digits after the decimal
* point.
* `precision` is undefined by default,
* not rounding any digits.
* {number} lowerExp Exponent determining the lower boundary
* for formatting a value with an exponent
* when `notation='auto`.
* Default value is `-3`.
* {number} upperExp Exponent determining the upper boundary
* for formatting a value with an exponent
* when `notation='auto`.
* Default value is `5`.
* {Function} fn A custom formatting function. Can be used to override the
* built-in notations. Function `fn` is called with `value` as
* parameter and must return a string. Is useful for example to
* format all values inside a matrix in a particular way.
*
* Examples:
*
* format(6.4) // '6.4'
* format(1240000) // '1.24e6'
* format(1/3) // '0.3333333333333333'
* format(1/3, 3) // '0.333'
* format(21385, 2) // '21000'
* format(12.071, {notation: 'fixed'}) // '12'
* format(2.3, {notation: 'fixed', precision: 2}) // '2.30'
* format(52.8, {notation: 'exponential'}) // '5.28e+1'
* format(12345678, {notation: 'engineering'}) // '12.345678e+6'
*
* @param {number} value
* @param {Object | Function | number} [options]
* @return {string} str The formatted value
*/
function format(value, options) {
if (typeof options === 'function') {
// handle format(value, fn)
return options(value);
} // handle special cases
if (value === Infinity) {
return 'Infinity';
} else if (value === -Infinity) {
return '-Infinity';
} else if (isNaN(value)) {
return 'NaN';
} // default values for options
var notation = 'auto';
var precision;
var wordSize;
if (options) {
// determine notation from options
if (options.notation) {
notation = options.notation;
} // determine precision from options
if ((0, _is.isNumber)(options)) {
precision = options;
} else if ((0, _is.isNumber)(options.precision)) {
precision = options.precision;
}
if (options.wordSize) {
wordSize = options.wordSize;
if (typeof wordSize !== 'number') {
throw new Error('Option "wordSize" must be a number');
}
}
} // handle the various notations
switch (notation) {
case 'fixed':
return toFixed(value, precision);
case 'exponential':
return toExponential(value, precision);
case 'engineering':
return toEngineering(value, precision);
case 'bin':
return formatNumberToBase(value, 2, wordSize);
case 'oct':
return formatNumberToBase(value, 8, wordSize);
case 'hex':
return formatNumberToBase(value, 16, wordSize);
case 'auto':
// remove trailing zeros after the decimal point
return toPrecision(value, precision, options && options).replace(/((\.\d*?)(0+))($|e)/, function () {
var digits = arguments[2];
var e = arguments[4];
return digits !== '.' ? digits + e : e;
});
default:
throw new Error('Unknown notation "' + notation + '". ' + 'Choose "auto", "exponential", "fixed", "bin", "oct", or "hex.');
}
}
/**
* Split a number into sign, coefficients, and exponent
* @param {number | string} value
* @return {SplitValue}
* Returns an object containing sign, coefficients, and exponent
*/
function splitNumber(value) {
// parse the input value
var match = String(value).toLowerCase().match(/^(-?)(\d+\.?\d*)(e([+-]?\d+))?$/);
if (!match) {
throw new SyntaxError('Invalid number ' + value);
}
var sign = match[1];
var digits = match[2];
var exponent = parseFloat(match[4] || '0');
var dot = digits.indexOf('.');
exponent += dot !== -1 ? dot - 1 : digits.length - 1;
var coefficients = digits.replace('.', '') // remove the dot (must be removed before removing leading zeros)
.replace(/^0*/, function (zeros) {
// remove leading zeros, add their count to the exponent
exponent -= zeros.length;
return '';
}).replace(/0*$/, '') // remove trailing zeros
.split('').map(function (d) {
return parseInt(d);
});
if (coefficients.length === 0) {
coefficients.push(0);
exponent++;
}
return {
sign: sign,
coefficients: coefficients,
exponent: exponent
};
}
/**
* Format a number in engineering notation. Like '1.23e+6', '2.3e+0', '3.500e-3'
* @param {number | string} value
* @param {number} [precision] Optional number of significant figures to return.
*/
function toEngineering(value, precision) {
if (isNaN(value) || !isFinite(value)) {
return String(value);
}
var split = splitNumber(value);
var rounded = roundDigits(split, precision);
var e = rounded.exponent;
var c = rounded.coefficients; // find nearest lower multiple of 3 for exponent
var newExp = e % 3 === 0 ? e : e < 0 ? e - 3 - e % 3 : e - e % 3;
if ((0, _is.isNumber)(precision)) {
// add zeroes to give correct sig figs
while (precision > c.length || e - newExp + 1 > c.length) {
c.push(0);
}
} else {
// concatenate coefficients with necessary zeros
// add zeros if necessary (for example: 1e+8 -> 100e+6)
var missingZeros = Math.abs(e - newExp) - (c.length - 1);
for (var i = 0; i < missingZeros; i++) {
c.push(0);
}
} // find difference in exponents
var expDiff = Math.abs(e - newExp);
var decimalIdx = 1; // push decimal index over by expDiff times
while (expDiff > 0) {
decimalIdx++;
expDiff--;
} // if all coefficient values are zero after the decimal point and precision is unset, don't add a decimal value.
// otherwise concat with the rest of the coefficients
var decimals = c.slice(decimalIdx).join('');
var decimalVal = (0, _is.isNumber)(precision) && decimals.length || decimals.match(/[1-9]/) ? '.' + decimals : '';
var str = c.slice(0, decimalIdx).join('') + decimalVal + 'e' + (e >= 0 ? '+' : '') + newExp.toString();
return rounded.sign + str;
}
/**
* Format a number with fixed notation.
* @param {number | string} value
* @param {number} [precision=undefined] Optional number of decimals after the
* decimal point. null by default.
*/
function toFixed(value, precision) {
if (isNaN(value) || !isFinite(value)) {
return String(value);
}
var splitValue = splitNumber(value);
var rounded = typeof precision === 'number' ? roundDigits(splitValue, splitValue.exponent + 1 + precision) : splitValue;
var c = rounded.coefficients;
var p = rounded.exponent + 1; // exponent may have changed
// append zeros if needed
var pp = p + (precision || 0);
if (c.length < pp) {
c = c.concat(zeros(pp - c.length));
} // prepend zeros if needed
if (p < 0) {
c = zeros(-p + 1).concat(c);
p = 1;
} // insert a dot if needed
if (p < c.length) {
c.splice(p, 0, p === 0 ? '0.' : '.');
}
return rounded.sign + c.join('');
}
/**
* Format a number in exponential notation. Like '1.23e+5', '2.3e+0', '3.500e-3'
* @param {number | string} value
* @param {number} [precision] Number of digits in formatted output.
* If not provided, the maximum available digits
* is used.
*/
function toExponential(value, precision) {
if (isNaN(value) || !isFinite(value)) {
return String(value);
} // round if needed, else create a clone
var split = splitNumber(value);
var rounded = precision ? roundDigits(split, precision) : split;
var c = rounded.coefficients;
var e = rounded.exponent; // append zeros if needed
if (c.length < precision) {
c = c.concat(zeros(precision - c.length));
} // format as `C.CCCe+EEE` or `C.CCCe-EEE`
var first = c.shift();
return rounded.sign + first + (c.length > 0 ? '.' + c.join('') : '') + 'e' + (e >= 0 ? '+' : '') + e;
}
/**
* Format a number with a certain precision
* @param {number | string} value
* @param {number} [precision=undefined] Optional number of digits.
* @param {{lowerExp: number | undefined, upperExp: number | undefined}} [options]
* By default:
* lowerExp = -3 (incl)
* upper = +5 (excl)
* @return {string}
*/
function toPrecision(value, precision, options) {
if (isNaN(value) || !isFinite(value)) {
return String(value);
} // determine lower and upper bound for exponential notation.
var lowerExp = options && options.lowerExp !== undefined ? options.lowerExp : -3;
var upperExp = options && options.upperExp !== undefined ? options.upperExp : 5;
var split = splitNumber(value);
var rounded = precision ? roundDigits(split, precision) : split;
if (rounded.exponent < lowerExp || rounded.exponent >= upperExp) {
// exponential notation
return toExponential(value, precision);
} else {
var c = rounded.coefficients;
var e = rounded.exponent; // append trailing zeros
if (c.length < precision) {
c = c.concat(zeros(precision - c.length));
} // append trailing zeros
// TODO: simplify the next statement
c = c.concat(zeros(e - c.length + 1 + (c.length < precision ? precision - c.length : 0))); // prepend zeros
c = zeros(-e).concat(c);
var dot = e > 0 ? e : 0;
if (dot < c.length - 1) {
c.splice(dot + 1, 0, '.');
}
return rounded.sign + c.join('');
}
}
/**
* Round the number of digits of a number *
* @param {SplitValue} split A value split with .splitNumber(value)
* @param {number} precision A positive integer
* @return {SplitValue}
* Returns an object containing sign, coefficients, and exponent
* with rounded digits
*/
function roundDigits(split, precision) {
// create a clone
var rounded = {
sign: split.sign,
coefficients: split.coefficients,
exponent: split.exponent
};
var c = rounded.coefficients; // prepend zeros if needed
while (precision <= 0) {
c.unshift(0);
rounded.exponent++;
precision++;
}
if (c.length > precision) {
var removed = c.splice(precision, c.length - precision);
if (removed[0] >= 5) {
var i = precision - 1;
c[i]++;
while (c[i] === 10) {
c.pop();
if (i === 0) {
c.unshift(0);
rounded.exponent++;
i++;
}
i--;
c[i]++;
}
}
}
return rounded;
}
/**
* Create an array filled with zeros.
* @param {number} length
* @return {Array}
*/
function zeros(length) {
var arr = [];
for (var i = 0; i < length; i++) {
arr.push(0);
}
return arr;
}
/**
* Count the number of significant digits of a number.
*
* For example:
* 2.34 returns 3
* 0.0034 returns 2
* 120.5e+30 returns 4
*
* @param {number} value
* @return {number} digits Number of significant digits
*/
function digits(value) {
return value.toExponential().replace(/e.*$/, '') // remove exponential notation
.replace(/^0\.?0*|\./, '') // remove decimal point and leading zeros
.length;
}
/**
* Minimum number added to one that makes the result different than one
*/
var DBL_EPSILON = Number.EPSILON || 2.2204460492503130808472633361816E-16;
/**
* Compares two floating point numbers.
* @param {number} x First value to compare
* @param {number} y Second value to compare
* @param {number} [epsilon] The maximum relative difference between x and y
* If epsilon is undefined or null, the function will
* test whether x and y are exactly equal.
* @return {boolean} whether the two numbers are nearly equal
*/
exports.DBL_EPSILON = DBL_EPSILON;
function nearlyEqual(x, y, epsilon) {
// if epsilon is null or undefined, test whether x and y are exactly equal
if (epsilon === null || epsilon === undefined) {
return x === y;
}
if (x === y) {
return true;
} // NaN
if (isNaN(x) || isNaN(y)) {
return false;
} // at this point x and y should be finite
if (isFinite(x) && isFinite(y)) {
// check numbers are very close, needed when comparing numbers near zero
var diff = Math.abs(x - y);
if (diff < DBL_EPSILON) {
return true;
} else {
// use relative error
return diff <= Math.max(Math.abs(x), Math.abs(y)) * epsilon;
}
} // Infinite and Number or negative Infinite and positive Infinite cases
return false;
}
/**
* Calculate the hyperbolic arccos of a number
* @param {number} x
* @return {number}
*/
var acosh = Math.acosh || function (x) {
return Math.log(Math.sqrt(x * x - 1) + x);
};
exports.acosh = acosh;
var asinh = Math.asinh || function (x) {
return Math.log(Math.sqrt(x * x + 1) + x);
};
/**
* Calculate the hyperbolic arctangent of a number
* @param {number} x
* @return {number}
*/
exports.asinh = asinh;
var atanh = Math.atanh || function (x) {
return Math.log((1 + x) / (1 - x)) / 2;
};
/**
* Calculate the hyperbolic cosine of a number
* @param {number} x
* @returns {number}
*/
exports.atanh = atanh;
var cosh = Math.cosh || function (x) {
return (Math.exp(x) + Math.exp(-x)) / 2;
};
/**
* Calculate the hyperbolic sine of a number
* @param {number} x
* @returns {number}
*/
exports.cosh = cosh;
var sinh = Math.sinh || function (x) {
return (Math.exp(x) - Math.exp(-x)) / 2;
};
/**
* Calculate the hyperbolic tangent of a number
* @param {number} x
* @returns {number}
*/
exports.sinh = sinh;
var tanh = Math.tanh || function (x) {
var e = Math.exp(2 * x);
return (e - 1) / (e + 1);
};
exports.tanh = tanh;