simple-squiggle/node_modules/mathjs/lib/cjs/utils/latex.js

501 lines
11 KiB
JavaScript
Raw Normal View History

"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.defaultTemplate = void 0;
exports.escapeLatex = escapeLatex;
exports.latexSymbols = exports.latexOperators = exports.latexFunctions = void 0;
exports.toSymbol = toSymbol;
var _escapeLatex = _interopRequireDefault(require("escape-latex"));
var _object = require("./object.js");
/* eslint no-template-curly-in-string: "off" */
var latexSymbols = {
// GREEK LETTERS
Alpha: 'A',
alpha: '\\alpha',
Beta: 'B',
beta: '\\beta',
Gamma: '\\Gamma',
gamma: '\\gamma',
Delta: '\\Delta',
delta: '\\delta',
Epsilon: 'E',
epsilon: '\\epsilon',
varepsilon: '\\varepsilon',
Zeta: 'Z',
zeta: '\\zeta',
Eta: 'H',
eta: '\\eta',
Theta: '\\Theta',
theta: '\\theta',
vartheta: '\\vartheta',
Iota: 'I',
iota: '\\iota',
Kappa: 'K',
kappa: '\\kappa',
varkappa: '\\varkappa',
Lambda: '\\Lambda',
lambda: '\\lambda',
Mu: 'M',
mu: '\\mu',
Nu: 'N',
nu: '\\nu',
Xi: '\\Xi',
xi: '\\xi',
Omicron: 'O',
omicron: 'o',
Pi: '\\Pi',
pi: '\\pi',
varpi: '\\varpi',
Rho: 'P',
rho: '\\rho',
varrho: '\\varrho',
Sigma: '\\Sigma',
sigma: '\\sigma',
varsigma: '\\varsigma',
Tau: 'T',
tau: '\\tau',
Upsilon: "\\Upsilon",
upsilon: "\\upsilon",
Phi: '\\Phi',
phi: '\\phi',
varphi: '\\varphi',
Chi: 'X',
chi: '\\chi',
Psi: '\\Psi',
psi: '\\psi',
Omega: '\\Omega',
omega: '\\omega',
// logic
true: '\\mathrm{True}',
false: '\\mathrm{False}',
// other
i: 'i',
// TODO use \i ??
inf: '\\infty',
Inf: '\\infty',
infinity: '\\infty',
Infinity: '\\infty',
oo: '\\infty',
lim: '\\lim',
undefined: '\\mathbf{?}'
};
exports.latexSymbols = latexSymbols;
var latexOperators = {
transpose: '^\\top',
ctranspose: '^H',
factorial: '!',
pow: '^',
dotPow: '.^\\wedge',
// TODO find ideal solution
unaryPlus: '+',
unaryMinus: '-',
bitNot: '\\~',
// TODO find ideal solution
not: '\\neg',
multiply: '\\cdot',
divide: '\\frac',
// TODO how to handle that properly?
dotMultiply: '.\\cdot',
// TODO find ideal solution
dotDivide: '.:',
// TODO find ideal solution
mod: '\\mod',
add: '+',
subtract: '-',
to: '\\rightarrow',
leftShift: '<<',
rightArithShift: '>>',
rightLogShift: '>>>',
equal: '=',
unequal: '\\neq',
smaller: '<',
larger: '>',
smallerEq: '\\leq',
largerEq: '\\geq',
bitAnd: '\\&',
bitXor: "\\underline{|}",
bitOr: '|',
and: '\\wedge',
xor: '\\veebar',
or: '\\vee'
};
exports.latexOperators = latexOperators;
var latexFunctions = {
// arithmetic
abs: {
1: '\\left|${args[0]}\\right|'
},
add: {
2: "\\left(${args[0]}".concat(latexOperators.add, "${args[1]}\\right)")
},
cbrt: {
1: '\\sqrt[3]{${args[0]}}'
},
ceil: {
1: '\\left\\lceil${args[0]}\\right\\rceil'
},
cube: {
1: '\\left(${args[0]}\\right)^3'
},
divide: {
2: '\\frac{${args[0]}}{${args[1]}}'
},
dotDivide: {
2: "\\left(${args[0]}".concat(latexOperators.dotDivide, "${args[1]}\\right)")
},
dotMultiply: {
2: "\\left(${args[0]}".concat(latexOperators.dotMultiply, "${args[1]}\\right)")
},
dotPow: {
2: "\\left(${args[0]}".concat(latexOperators.dotPow, "${args[1]}\\right)")
},
exp: {
1: '\\exp\\left(${args[0]}\\right)'
},
expm1: "\\left(e".concat(latexOperators.pow, "{${args[0]}}-1\\right)"),
fix: {
1: '\\mathrm{${name}}\\left(${args[0]}\\right)'
},
floor: {
1: '\\left\\lfloor${args[0]}\\right\\rfloor'
},
gcd: '\\gcd\\left(${args}\\right)',
hypot: '\\hypot\\left(${args}\\right)',
log: {
1: '\\ln\\left(${args[0]}\\right)',
2: '\\log_{${args[1]}}\\left(${args[0]}\\right)'
},
log10: {
1: '\\log_{10}\\left(${args[0]}\\right)'
},
log1p: {
1: '\\ln\\left(${args[0]}+1\\right)',
2: '\\log_{${args[1]}}\\left(${args[0]}+1\\right)'
},
log2: '\\log_{2}\\left(${args[0]}\\right)',
mod: {
2: "\\left(${args[0]}".concat(latexOperators.mod, "${args[1]}\\right)")
},
multiply: {
2: "\\left(${args[0]}".concat(latexOperators.multiply, "${args[1]}\\right)")
},
norm: {
1: '\\left\\|${args[0]}\\right\\|',
2: undefined // use default template
},
nthRoot: {
2: '\\sqrt[${args[1]}]{${args[0]}}'
},
nthRoots: {
2: '\\{y : $y^{args[1]} = {${args[0]}}\\}'
},
pow: {
2: "\\left(${args[0]}\\right)".concat(latexOperators.pow, "{${args[1]}}")
},
round: {
1: '\\left\\lfloor${args[0]}\\right\\rceil',
2: undefined // use default template
},
sign: {
1: '\\mathrm{${name}}\\left(${args[0]}\\right)'
},
sqrt: {
1: '\\sqrt{${args[0]}}'
},
square: {
1: '\\left(${args[0]}\\right)^2'
},
subtract: {
2: "\\left(${args[0]}".concat(latexOperators.subtract, "${args[1]}\\right)")
},
unaryMinus: {
1: "".concat(latexOperators.unaryMinus, "\\left(${args[0]}\\right)")
},
unaryPlus: {
1: "".concat(latexOperators.unaryPlus, "\\left(${args[0]}\\right)")
},
// bitwise
bitAnd: {
2: "\\left(${args[0]}".concat(latexOperators.bitAnd, "${args[1]}\\right)")
},
bitNot: {
1: latexOperators.bitNot + '\\left(${args[0]}\\right)'
},
bitOr: {
2: "\\left(${args[0]}".concat(latexOperators.bitOr, "${args[1]}\\right)")
},
bitXor: {
2: "\\left(${args[0]}".concat(latexOperators.bitXor, "${args[1]}\\right)")
},
leftShift: {
2: "\\left(${args[0]}".concat(latexOperators.leftShift, "${args[1]}\\right)")
},
rightArithShift: {
2: "\\left(${args[0]}".concat(latexOperators.rightArithShift, "${args[1]}\\right)")
},
rightLogShift: {
2: "\\left(${args[0]}".concat(latexOperators.rightLogShift, "${args[1]}\\right)")
},
// combinatorics
bellNumbers: {
1: '\\mathrm{B}_{${args[0]}}'
},
catalan: {
1: '\\mathrm{C}_{${args[0]}}'
},
stirlingS2: {
2: '\\mathrm{S}\\left(${args}\\right)'
},
// complex
arg: {
1: '\\arg\\left(${args[0]}\\right)'
},
conj: {
1: '\\left(${args[0]}\\right)^*'
},
im: {
1: '\\Im\\left\\lbrace${args[0]}\\right\\rbrace'
},
re: {
1: '\\Re\\left\\lbrace${args[0]}\\right\\rbrace'
},
// logical
and: {
2: "\\left(${args[0]}".concat(latexOperators.and, "${args[1]}\\right)")
},
not: {
1: latexOperators.not + '\\left(${args[0]}\\right)'
},
or: {
2: "\\left(${args[0]}".concat(latexOperators.or, "${args[1]}\\right)")
},
xor: {
2: "\\left(${args[0]}".concat(latexOperators.xor, "${args[1]}\\right)")
},
// matrix
cross: {
2: '\\left(${args[0]}\\right)\\times\\left(${args[1]}\\right)'
},
ctranspose: {
1: "\\left(${args[0]}\\right)".concat(latexOperators.ctranspose)
},
det: {
1: '\\det\\left(${args[0]}\\right)'
},
dot: {
2: '\\left(${args[0]}\\cdot${args[1]}\\right)'
},
expm: {
1: '\\exp\\left(${args[0]}\\right)'
},
inv: {
1: '\\left(${args[0]}\\right)^{-1}'
},
sqrtm: {
1: "{${args[0]}}".concat(latexOperators.pow, "{\\frac{1}{2}}")
},
trace: {
1: '\\mathrm{tr}\\left(${args[0]}\\right)'
},
transpose: {
1: "\\left(${args[0]}\\right)".concat(latexOperators.transpose)
},
// probability
combinations: {
2: '\\binom{${args[0]}}{${args[1]}}'
},
combinationsWithRep: {
2: '\\left(\\!\\!{\\binom{${args[0]}}{${args[1]}}}\\!\\!\\right)'
},
factorial: {
1: "\\left(${args[0]}\\right)".concat(latexOperators.factorial)
},
gamma: {
1: '\\Gamma\\left(${args[0]}\\right)'
},
// relational
equal: {
2: "\\left(${args[0]}".concat(latexOperators.equal, "${args[1]}\\right)")
},
larger: {
2: "\\left(${args[0]}".concat(latexOperators.larger, "${args[1]}\\right)")
},
largerEq: {
2: "\\left(${args[0]}".concat(latexOperators.largerEq, "${args[1]}\\right)")
},
smaller: {
2: "\\left(${args[0]}".concat(latexOperators.smaller, "${args[1]}\\right)")
},
smallerEq: {
2: "\\left(${args[0]}".concat(latexOperators.smallerEq, "${args[1]}\\right)")
},
unequal: {
2: "\\left(${args[0]}".concat(latexOperators.unequal, "${args[1]}\\right)")
},
// special
erf: {
1: 'erf\\left(${args[0]}\\right)'
},
// statistics
max: '\\max\\left(${args}\\right)',
min: '\\min\\left(${args}\\right)',
variance: '\\mathrm{Var}\\left(${args}\\right)',
// trigonometry
acos: {
1: '\\cos^{-1}\\left(${args[0]}\\right)'
},
acosh: {
1: '\\cosh^{-1}\\left(${args[0]}\\right)'
},
acot: {
1: '\\cot^{-1}\\left(${args[0]}\\right)'
},
acoth: {
1: '\\coth^{-1}\\left(${args[0]}\\right)'
},
acsc: {
1: '\\csc^{-1}\\left(${args[0]}\\right)'
},
acsch: {
1: '\\mathrm{csch}^{-1}\\left(${args[0]}\\right)'
},
asec: {
1: '\\sec^{-1}\\left(${args[0]}\\right)'
},
asech: {
1: '\\mathrm{sech}^{-1}\\left(${args[0]}\\right)'
},
asin: {
1: '\\sin^{-1}\\left(${args[0]}\\right)'
},
asinh: {
1: '\\sinh^{-1}\\left(${args[0]}\\right)'
},
atan: {
1: '\\tan^{-1}\\left(${args[0]}\\right)'
},
atan2: {
2: '\\mathrm{atan2}\\left(${args}\\right)'
},
atanh: {
1: '\\tanh^{-1}\\left(${args[0]}\\right)'
},
cos: {
1: '\\cos\\left(${args[0]}\\right)'
},
cosh: {
1: '\\cosh\\left(${args[0]}\\right)'
},
cot: {
1: '\\cot\\left(${args[0]}\\right)'
},
coth: {
1: '\\coth\\left(${args[0]}\\right)'
},
csc: {
1: '\\csc\\left(${args[0]}\\right)'
},
csch: {
1: '\\mathrm{csch}\\left(${args[0]}\\right)'
},
sec: {
1: '\\sec\\left(${args[0]}\\right)'
},
sech: {
1: '\\mathrm{sech}\\left(${args[0]}\\right)'
},
sin: {
1: '\\sin\\left(${args[0]}\\right)'
},
sinh: {
1: '\\sinh\\left(${args[0]}\\right)'
},
tan: {
1: '\\tan\\left(${args[0]}\\right)'
},
tanh: {
1: '\\tanh\\left(${args[0]}\\right)'
},
// unit
to: {
2: "\\left(${args[0]}".concat(latexOperators.to, "${args[1]}\\right)")
},
// utils
numeric: function numeric(node, options) {
// Not sure if this is strictly right but should work correctly for the vast majority of use cases.
return node.args[0].toTex();
},
// type
number: {
0: '0',
1: '\\left(${args[0]}\\right)',
2: '\\left(\\left(${args[0]}\\right)${args[1]}\\right)'
},
string: {
0: '\\mathtt{""}',
1: '\\mathrm{string}\\left(${args[0]}\\right)'
},
bignumber: {
0: '0',
1: '\\left(${args[0]}\\right)'
},
complex: {
0: '0',
1: '\\left(${args[0]}\\right)',
2: "\\left(\\left(${args[0]}\\right)+".concat(latexSymbols.i, "\\cdot\\left(${args[1]}\\right)\\right)")
},
matrix: {
0: '\\begin{bmatrix}\\end{bmatrix}',
1: '\\left(${args[0]}\\right)',
2: '\\left(${args[0]}\\right)'
},
sparse: {
0: '\\begin{bsparse}\\end{bsparse}',
1: '\\left(${args[0]}\\right)'
},
unit: {
1: '\\left(${args[0]}\\right)',
2: '\\left(\\left(${args[0]}\\right)${args[1]}\\right)'
}
};
exports.latexFunctions = latexFunctions;
var defaultTemplate = '\\mathrm{${name}}\\left(${args}\\right)';
exports.defaultTemplate = defaultTemplate;
var latexUnits = {
deg: '^\\circ'
};
function escapeLatex(string) {
return (0, _escapeLatex.default)(string, {
preserveFormatting: true
});
} // @param {string} name
// @param {boolean} isUnit
function toSymbol(name, isUnit) {
isUnit = typeof isUnit === 'undefined' ? false : isUnit;
if (isUnit) {
if ((0, _object.hasOwnProperty)(latexUnits, name)) {
return latexUnits[name];
}
return '\\mathrm{' + escapeLatex(name) + '}';
}
if ((0, _object.hasOwnProperty)(latexSymbols, name)) {
return latexSymbols[name];
}
return escapeLatex(name);
}