simple-squiggle/node_modules/mathjs/lib/cjs/function/probability/gamma.js

138 lines
4.0 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createGamma = void 0;
var _collection = require("../../utils/collection.js");
var _factory = require("../../utils/factory.js");
var _index = require("../../plain/number/index.js");
var name = 'gamma';
var dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex'];
var createGamma = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
config = _ref.config,
multiplyScalar = _ref.multiplyScalar,
pow = _ref.pow,
_BigNumber = _ref.BigNumber,
_Complex = _ref.Complex;
/**
* Compute the gamma function of a value using Lanczos approximation for
* small values, and an extended Stirling approximation for large values.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.gamma(n)
*
* Examples:
*
* math.gamma(5) // returns 24
* math.gamma(-0.5) // returns -3.5449077018110335
* math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i
*
* See also:
*
* combinations, factorial, permutations
*
* @param {number | Array | Matrix} n A real or complex number
* @return {number | Array | Matrix} The gamma of `n`
*/
return typed(name, {
number: _index.gammaNumber,
Complex: function Complex(n) {
if (n.im === 0) {
return this(n.re);
} // Lanczos approximation doesn't work well with real part lower than 0.5
// So reflection formula is required
if (n.re < 0.5) {
// Euler's reflection formula
// gamma(1-z) * gamma(z) = PI / sin(PI * z)
// real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined]
// thanks to imperfect sin implementation sin(PI * n) != 0
// we can safely use it anyway
var _t = new _Complex(1 - n.re, -n.im);
var r = new _Complex(Math.PI * n.re, Math.PI * n.im);
return new _Complex(Math.PI).div(r.sin()).div(this(_t));
} // Lanczos approximation
// z -= 1
n = new _Complex(n.re - 1, n.im); // x = gammaPval[0]
var x = new _Complex(_index.gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP):
for (var i = 1; i < _index.gammaP.length; ++i) {
// x += gammaPval / (z + i)
var gammaPval = new _Complex(_index.gammaP[i], 0);
x = x.add(gammaPval.div(n.add(i)));
} // t = z + gammaG + 0.5
var t = new _Complex(n.re + _index.gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x
var twoPiSqrt = Math.sqrt(2 * Math.PI);
var tpow = t.pow(n.add(0.5));
var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)]
return x.mul(twoPiSqrt).mul(tpow).mul(expt);
},
BigNumber: function BigNumber(n) {
if (n.isInteger()) {
return n.isNegative() || n.isZero() ? new _BigNumber(Infinity) : bigFactorial(n.minus(1));
}
if (!n.isFinite()) {
return new _BigNumber(n.isNegative() ? NaN : Infinity);
}
throw new Error('Integer BigNumber expected');
},
'Array | Matrix': function ArrayMatrix(n) {
return (0, _collection.deepMap)(n, this);
}
});
/**
* Calculate factorial for a BigNumber
* @param {BigNumber} n
* @returns {BigNumber} Returns the factorial of n
*/
function bigFactorial(n) {
if (n < 8) {
return new _BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]);
}
var precision = config.precision + (Math.log(n.toNumber()) | 0);
var Big = _BigNumber.clone({
precision: precision
});
if (n % 2 === 1) {
return n.times(bigFactorial(new _BigNumber(n - 1)));
}
var p = n;
var prod = new Big(n);
var sum = n.toNumber();
while (p > 2) {
p -= 2;
sum += p;
prod = prod.times(sum);
}
return new _BigNumber(prod.toPrecision(_BigNumber.precision));
}
});
exports.createGamma = createGamma;