184 lines
4.4 KiB
JavaScript
184 lines
4.4 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createTranspose = void 0;
|
||
|
|
||
|
var _object = require("../../utils/object.js");
|
||
|
|
||
|
var _string = require("../../utils/string.js");
|
||
|
|
||
|
var _factory = require("../../utils/factory.js");
|
||
|
|
||
|
var name = 'transpose';
|
||
|
var dependencies = ['typed', 'matrix'];
|
||
|
var createTranspose = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var typed = _ref.typed,
|
||
|
matrix = _ref.matrix;
|
||
|
|
||
|
/**
|
||
|
* Transpose a matrix. All values of the matrix are reflected over its
|
||
|
* main diagonal. Only applicable to two dimensional matrices containing
|
||
|
* a vector (i.e. having size `[1,n]` or `[n,1]`). One dimensional
|
||
|
* vectors and scalars return the input unchanged.
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.transpose(x)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* const A = [[1, 2, 3], [4, 5, 6]]
|
||
|
* math.transpose(A) // returns [[1, 4], [2, 5], [3, 6]]
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* diag, inv, subset, squeeze
|
||
|
*
|
||
|
* @param {Array | Matrix} x Matrix to be transposed
|
||
|
* @return {Array | Matrix} The transposed matrix
|
||
|
*/
|
||
|
return typed('transpose', {
|
||
|
Array: function Array(x) {
|
||
|
// use dense matrix implementation
|
||
|
return this(matrix(x)).valueOf();
|
||
|
},
|
||
|
Matrix: function Matrix(x) {
|
||
|
// matrix size
|
||
|
var size = x.size(); // result
|
||
|
|
||
|
var c; // process dimensions
|
||
|
|
||
|
switch (size.length) {
|
||
|
case 1:
|
||
|
// vector
|
||
|
c = x.clone();
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
{
|
||
|
// rows and columns
|
||
|
var rows = size[0];
|
||
|
var columns = size[1]; // check columns
|
||
|
|
||
|
if (columns === 0) {
|
||
|
// throw exception
|
||
|
throw new RangeError('Cannot transpose a 2D matrix with no columns (size: ' + (0, _string.format)(size) + ')');
|
||
|
} // process storage format
|
||
|
|
||
|
|
||
|
switch (x.storage()) {
|
||
|
case 'dense':
|
||
|
c = _denseTranspose(x, rows, columns);
|
||
|
break;
|
||
|
|
||
|
case 'sparse':
|
||
|
c = _sparseTranspose(x, rows, columns);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
// multi dimensional
|
||
|
throw new RangeError('Matrix must be a vector or two dimensional (size: ' + (0, _string.format)(this._size) + ')');
|
||
|
}
|
||
|
|
||
|
return c;
|
||
|
},
|
||
|
// scalars
|
||
|
any: function any(x) {
|
||
|
return (0, _object.clone)(x);
|
||
|
}
|
||
|
});
|
||
|
|
||
|
function _denseTranspose(m, rows, columns) {
|
||
|
// matrix array
|
||
|
var data = m._data; // transposed matrix data
|
||
|
|
||
|
var transposed = [];
|
||
|
var transposedRow; // loop columns
|
||
|
|
||
|
for (var j = 0; j < columns; j++) {
|
||
|
// initialize row
|
||
|
transposedRow = transposed[j] = []; // loop rows
|
||
|
|
||
|
for (var i = 0; i < rows; i++) {
|
||
|
// set data
|
||
|
transposedRow[i] = (0, _object.clone)(data[i][j]);
|
||
|
}
|
||
|
} // return matrix
|
||
|
|
||
|
|
||
|
return m.createDenseMatrix({
|
||
|
data: transposed,
|
||
|
size: [columns, rows],
|
||
|
datatype: m._datatype
|
||
|
});
|
||
|
}
|
||
|
|
||
|
function _sparseTranspose(m, rows, columns) {
|
||
|
// matrix arrays
|
||
|
var values = m._values;
|
||
|
var index = m._index;
|
||
|
var ptr = m._ptr; // result matrices
|
||
|
|
||
|
var cvalues = values ? [] : undefined;
|
||
|
var cindex = [];
|
||
|
var cptr = []; // row counts
|
||
|
|
||
|
var w = [];
|
||
|
|
||
|
for (var x = 0; x < rows; x++) {
|
||
|
w[x] = 0;
|
||
|
} // vars
|
||
|
|
||
|
|
||
|
var p, l, j; // loop values in matrix
|
||
|
|
||
|
for (p = 0, l = index.length; p < l; p++) {
|
||
|
// number of values in row
|
||
|
w[index[p]]++;
|
||
|
} // cumulative sum
|
||
|
|
||
|
|
||
|
var sum = 0; // initialize cptr with the cummulative sum of row counts
|
||
|
|
||
|
for (var i = 0; i < rows; i++) {
|
||
|
// update cptr
|
||
|
cptr.push(sum); // update sum
|
||
|
|
||
|
sum += w[i]; // update w
|
||
|
|
||
|
w[i] = cptr[i];
|
||
|
} // update cptr
|
||
|
|
||
|
|
||
|
cptr.push(sum); // loop columns
|
||
|
|
||
|
for (j = 0; j < columns; j++) {
|
||
|
// values & index in column
|
||
|
for (var k0 = ptr[j], k1 = ptr[j + 1], k = k0; k < k1; k++) {
|
||
|
// C values & index
|
||
|
var q = w[index[k]]++; // C[j, i] = A[i, j]
|
||
|
|
||
|
cindex[q] = j; // check we need to process values (pattern matrix)
|
||
|
|
||
|
if (values) {
|
||
|
cvalues[q] = (0, _object.clone)(values[k]);
|
||
|
}
|
||
|
}
|
||
|
} // return matrix
|
||
|
|
||
|
|
||
|
return m.createSparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [columns, rows],
|
||
|
datatype: m._datatype
|
||
|
});
|
||
|
}
|
||
|
});
|
||
|
exports.createTranspose = createTranspose;
|