simple-squiggle/node_modules/mathjs/lib/cjs/function/matrix/eigs.js

291 lines
8.0 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createEigs = void 0;
var _factory = require("../../utils/factory.js");
var _string = require("../../utils/string.js");
var _complexEigs = require("./eigs/complexEigs.js");
var _realSymetric = require("./eigs/realSymetric.js");
var _is = require("../../utils/is.js");
var name = 'eigs'; // The absolute state of math.js's dependency system:
var dependencies = ['config', 'typed', 'matrix', 'addScalar', 'equal', 'subtract', 'abs', 'atan', 'cos', 'sin', 'multiplyScalar', 'divideScalar', 'inv', 'bignumber', 'multiply', 'add', 'larger', 'column', 'flatten', 'number', 'complex', 'sqrt', 'diag', 'qr', 'usolve', 'usolveAll', 'im', 're', 'smaller', 'matrixFromColumns', 'dot'];
var createEigs = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var config = _ref.config,
typed = _ref.typed,
matrix = _ref.matrix,
addScalar = _ref.addScalar,
subtract = _ref.subtract,
equal = _ref.equal,
abs = _ref.abs,
atan = _ref.atan,
cos = _ref.cos,
sin = _ref.sin,
multiplyScalar = _ref.multiplyScalar,
divideScalar = _ref.divideScalar,
inv = _ref.inv,
bignumber = _ref.bignumber,
multiply = _ref.multiply,
add = _ref.add,
larger = _ref.larger,
column = _ref.column,
flatten = _ref.flatten,
number = _ref.number,
complex = _ref.complex,
sqrt = _ref.sqrt,
diag = _ref.diag,
qr = _ref.qr,
usolve = _ref.usolve,
usolveAll = _ref.usolveAll,
im = _ref.im,
re = _ref.re,
smaller = _ref.smaller,
matrixFromColumns = _ref.matrixFromColumns,
dot = _ref.dot;
var doRealSymetric = (0, _realSymetric.createRealSymmetric)({
config: config,
addScalar: addScalar,
subtract: subtract,
column: column,
flatten: flatten,
equal: equal,
abs: abs,
atan: atan,
cos: cos,
sin: sin,
multiplyScalar: multiplyScalar,
inv: inv,
bignumber: bignumber,
complex: complex,
multiply: multiply,
add: add
});
var doComplexEigs = (0, _complexEigs.createComplexEigs)({
config: config,
addScalar: addScalar,
subtract: subtract,
multiply: multiply,
multiplyScalar: multiplyScalar,
flatten: flatten,
divideScalar: divideScalar,
sqrt: sqrt,
abs: abs,
bignumber: bignumber,
diag: diag,
qr: qr,
inv: inv,
usolve: usolve,
usolveAll: usolveAll,
equal: equal,
complex: complex,
larger: larger,
smaller: smaller,
matrixFromColumns: matrixFromColumns,
dot: dot
});
/**
* Compute eigenvalues and eigenvectors of a matrix. The eigenvalues are sorted by their absolute value, ascending.
* An eigenvalue with multiplicity k will be listed k times. The eigenvectors are returned as columns of a matrix
* the eigenvector that belongs to the j-th eigenvalue in the list (eg. `values[j]`) is the j-th column (eg. `column(vectors, j)`).
* If the algorithm fails to converge, it will throw an error in that case, however, you may still find useful information
* in `err.values` and `err.vectors`.
*
* Syntax:
*
* math.eigs(x, [prec])
*
* Examples:
*
* const { eigs, multiply, column, transpose } = math
* const H = [[5, 2.3], [2.3, 1]]
* const ans = eigs(H) // returns {values: [E1,E2...sorted], vectors: [v1,v2.... corresponding vectors as columns]}
* const E = ans.values
* const U = ans.vectors
* multiply(H, column(U, 0)) // returns multiply(E[0], column(U, 0))
* const UTxHxU = multiply(transpose(U), H, U) // diagonalizes H
* E[0] == UTxHxU[0][0] // returns true
*
* See also:
*
* inv
*
* @param {Array | Matrix} x Matrix to be diagonalized
*
* @param {number | BigNumber} [prec] Precision, default value: 1e-15
* @return {{values: Array|Matrix, vectors: Array|Matrix}} Object containing an array of eigenvalues and a matrix with eigenvectors as columns.
*
*/
return typed('eigs', {
Array: function Array(x) {
var mat = matrix(x);
return computeValuesAndVectors(mat);
},
'Array, number|BigNumber': function ArrayNumberBigNumber(x, prec) {
var mat = matrix(x);
return computeValuesAndVectors(mat, prec);
},
Matrix: function Matrix(mat) {
var _computeValuesAndVect = computeValuesAndVectors(mat),
values = _computeValuesAndVect.values,
vectors = _computeValuesAndVect.vectors;
return {
values: matrix(values),
vectors: matrix(vectors)
};
},
'Matrix, number|BigNumber': function MatrixNumberBigNumber(mat, prec) {
var _computeValuesAndVect2 = computeValuesAndVectors(mat, prec),
values = _computeValuesAndVect2.values,
vectors = _computeValuesAndVect2.vectors;
return {
values: matrix(values),
vectors: matrix(vectors)
};
}
});
function computeValuesAndVectors(mat, prec) {
if (prec === undefined) {
prec = config.epsilon;
}
var size = mat.size();
if (size.length !== 2 || size[0] !== size[1]) {
throw new RangeError('Matrix must be square (size: ' + (0, _string.format)(size) + ')');
}
var arr = mat.toArray();
var N = size[0];
if (isReal(arr, N, prec)) {
coerceReal(arr, N);
if (isSymmetric(arr, N, prec)) {
var _type = coerceTypes(mat, arr, N);
return doRealSymetric(arr, N, prec, _type);
}
}
var type = coerceTypes(mat, arr, N);
return doComplexEigs(arr, N, prec, type);
}
/** @return {boolean} */
function isSymmetric(arr, N, prec) {
for (var i = 0; i < N; i++) {
for (var j = i; j < N; j++) {
// TODO proper comparison of bignum and frac
if (larger(bignumber(abs(subtract(arr[i][j], arr[j][i]))), prec)) {
return false;
}
}
}
return true;
}
/** @return {boolean} */
function isReal(arr, N, prec) {
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
// TODO proper comparison of bignum and frac
if (larger(bignumber(abs(im(arr[i][j]))), prec)) {
return false;
}
}
}
return true;
}
function coerceReal(arr, N) {
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
arr[i][j] = re(arr[i][j]);
}
}
}
/** @return {'number' | 'BigNumber' | 'Complex'} */
function coerceTypes(mat, arr, N) {
/** @type {string} */
var type = mat.datatype();
if (type === 'number' || type === 'BigNumber' || type === 'Complex') {
return type;
}
var hasNumber = false;
var hasBig = false;
var hasComplex = false;
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
var el = arr[i][j];
if ((0, _is.isNumber)(el) || (0, _is.isFraction)(el)) {
hasNumber = true;
} else if ((0, _is.isBigNumber)(el)) {
hasBig = true;
} else if ((0, _is.isComplex)(el)) {
hasComplex = true;
} else {
throw TypeError('Unsupported type in Matrix: ' + (0, _is.typeOf)(el));
}
}
}
if (hasBig && hasComplex) {
console.warn('Complex BigNumbers not supported, this operation will lose precission.');
}
if (hasComplex) {
for (var _i = 0; _i < N; _i++) {
for (var _j = 0; _j < N; _j++) {
arr[_i][_j] = complex(arr[_i][_j]);
}
}
return 'Complex';
}
if (hasBig) {
for (var _i2 = 0; _i2 < N; _i2++) {
for (var _j2 = 0; _j2 < N; _j2++) {
arr[_i2][_j2] = bignumber(arr[_i2][_j2]);
}
}
return 'BigNumber';
}
if (hasNumber) {
for (var _i3 = 0; _i3 < N; _i3++) {
for (var _j3 = 0; _j3 < N; _j3++) {
arr[_i3][_j3] = number(arr[_i3][_j3]);
}
}
return 'number';
} else {
throw TypeError('Matrix contains unsupported types only.');
}
}
});
exports.createEigs = createEigs;