136 lines
3.2 KiB
JavaScript
136 lines
3.2 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createApply = void 0;
|
||
|
|
||
|
var _factory = require("../../utils/factory.js");
|
||
|
|
||
|
var _array = require("../../utils/array.js");
|
||
|
|
||
|
var _is = require("../../utils/is.js");
|
||
|
|
||
|
var _IndexError = require("../../error/IndexError.js");
|
||
|
|
||
|
var name = 'apply';
|
||
|
var dependencies = ['typed', 'isInteger'];
|
||
|
var createApply = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var typed = _ref.typed,
|
||
|
isInteger = _ref.isInteger;
|
||
|
|
||
|
/**
|
||
|
* Apply a function that maps an array to a scalar
|
||
|
* along a given axis of a matrix or array.
|
||
|
* Returns a new matrix or array with one less dimension than the input.
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.apply(A, dim, callback)
|
||
|
*
|
||
|
* Where:
|
||
|
*
|
||
|
* - `dim: number` is a zero-based dimension over which to concatenate the matrices.
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* const A = [[1, 2], [3, 4]]
|
||
|
* const sum = math.sum
|
||
|
*
|
||
|
* math.apply(A, 0, sum) // returns [4, 6]
|
||
|
* math.apply(A, 1, sum) // returns [3, 7]
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* map, filter, forEach
|
||
|
*
|
||
|
* @param {Array | Matrix} array The input Matrix
|
||
|
* @param {number} dim The dimension along which the callback is applied
|
||
|
* @param {Function} callback The callback function that is applied. This Function
|
||
|
* should take an array or 1-d matrix as an input and
|
||
|
* return a number.
|
||
|
* @return {Array | Matrix} res The residual matrix with the function applied over some dimension.
|
||
|
*/
|
||
|
return typed(name, {
|
||
|
'Array | Matrix, number | BigNumber, function': function ArrayMatrixNumberBigNumberFunction(mat, dim, callback) {
|
||
|
if (!isInteger(dim)) {
|
||
|
throw new TypeError('Integer number expected for dimension');
|
||
|
}
|
||
|
|
||
|
var size = Array.isArray(mat) ? (0, _array.arraySize)(mat) : mat.size();
|
||
|
|
||
|
if (dim < 0 || dim >= size.length) {
|
||
|
throw new _IndexError.IndexError(dim, size.length);
|
||
|
}
|
||
|
|
||
|
if ((0, _is.isMatrix)(mat)) {
|
||
|
return mat.create(_apply(mat.valueOf(), dim, callback));
|
||
|
} else {
|
||
|
return _apply(mat, dim, callback);
|
||
|
}
|
||
|
}
|
||
|
});
|
||
|
});
|
||
|
/**
|
||
|
* Recursively reduce a matrix
|
||
|
* @param {Array} mat
|
||
|
* @param {number} dim
|
||
|
* @param {Function} callback
|
||
|
* @returns {Array} ret
|
||
|
* @private
|
||
|
*/
|
||
|
|
||
|
exports.createApply = createApply;
|
||
|
|
||
|
function _apply(mat, dim, callback) {
|
||
|
var i, ret, tran;
|
||
|
|
||
|
if (dim <= 0) {
|
||
|
if (!Array.isArray(mat[0])) {
|
||
|
return callback(mat);
|
||
|
} else {
|
||
|
tran = _switch(mat);
|
||
|
ret = [];
|
||
|
|
||
|
for (i = 0; i < tran.length; i++) {
|
||
|
ret[i] = _apply(tran[i], dim - 1, callback);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
} else {
|
||
|
ret = [];
|
||
|
|
||
|
for (i = 0; i < mat.length; i++) {
|
||
|
ret[i] = _apply(mat[i], dim - 1, callback);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Transpose a matrix
|
||
|
* @param {Array} mat
|
||
|
* @returns {Array} ret
|
||
|
* @private
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _switch(mat) {
|
||
|
var I = mat.length;
|
||
|
var J = mat[0].length;
|
||
|
var i, j;
|
||
|
var ret = [];
|
||
|
|
||
|
for (j = 0; j < J; j++) {
|
||
|
var tmp = [];
|
||
|
|
||
|
for (i = 0; i < I; i++) {
|
||
|
tmp.push(mat[i][j]);
|
||
|
}
|
||
|
|
||
|
ret.push(tmp);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|