222 lines
6.7 KiB
JavaScript
222 lines
6.7 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createNthRootNumber = exports.createNthRoot = void 0;
|
||
|
|
||
|
var _factory = require("../../utils/factory.js");
|
||
|
|
||
|
var _algorithm = require("../../type/matrix/utils/algorithm01.js");
|
||
|
|
||
|
var _algorithm2 = require("../../type/matrix/utils/algorithm02.js");
|
||
|
|
||
|
var _algorithm3 = require("../../type/matrix/utils/algorithm06.js");
|
||
|
|
||
|
var _algorithm4 = require("../../type/matrix/utils/algorithm11.js");
|
||
|
|
||
|
var _algorithm5 = require("../../type/matrix/utils/algorithm13.js");
|
||
|
|
||
|
var _algorithm6 = require("../../type/matrix/utils/algorithm14.js");
|
||
|
|
||
|
var _index = require("../../plain/number/index.js");
|
||
|
|
||
|
var name = 'nthRoot';
|
||
|
var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber'];
|
||
|
var createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var typed = _ref.typed,
|
||
|
matrix = _ref.matrix,
|
||
|
equalScalar = _ref.equalScalar,
|
||
|
_BigNumber = _ref.BigNumber;
|
||
|
var algorithm01 = (0, _algorithm.createAlgorithm01)({
|
||
|
typed: typed
|
||
|
});
|
||
|
var algorithm02 = (0, _algorithm2.createAlgorithm02)({
|
||
|
typed: typed,
|
||
|
equalScalar: equalScalar
|
||
|
});
|
||
|
var algorithm06 = (0, _algorithm3.createAlgorithm06)({
|
||
|
typed: typed,
|
||
|
equalScalar: equalScalar
|
||
|
});
|
||
|
var algorithm11 = (0, _algorithm4.createAlgorithm11)({
|
||
|
typed: typed,
|
||
|
equalScalar: equalScalar
|
||
|
});
|
||
|
var algorithm13 = (0, _algorithm5.createAlgorithm13)({
|
||
|
typed: typed
|
||
|
});
|
||
|
var algorithm14 = (0, _algorithm6.createAlgorithm14)({
|
||
|
typed: typed
|
||
|
});
|
||
|
/**
|
||
|
* Calculate the nth root of a value.
|
||
|
* The principal nth root of a positive real number A, is the positive real
|
||
|
* solution of the equation
|
||
|
*
|
||
|
* x^root = A
|
||
|
*
|
||
|
* For matrices, the function is evaluated element wise.
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.nthRoot(a)
|
||
|
* math.nthRoot(a, root)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* math.nthRoot(9, 2) // returns 3, as 3^2 == 9
|
||
|
* math.sqrt(9) // returns 3, as 3^2 == 9
|
||
|
* math.nthRoot(64, 3) // returns 4, as 4^3 == 64
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* sqrt, pow
|
||
|
*
|
||
|
* @param {number | BigNumber | Array | Matrix | Complex} a
|
||
|
* Value for which to calculate the nth root
|
||
|
* @param {number | BigNumber} [root=2] The root.
|
||
|
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
|
||
|
*/
|
||
|
|
||
|
var complexErr = '' + 'Complex number not supported in function nthRoot. ' + 'Use nthRoots instead.';
|
||
|
return typed(name, {
|
||
|
number: function number(x) {
|
||
|
return (0, _index.nthRootNumber)(x, 2);
|
||
|
},
|
||
|
'number, number': _index.nthRootNumber,
|
||
|
BigNumber: function BigNumber(x) {
|
||
|
return _bigNthRoot(x, new _BigNumber(2));
|
||
|
},
|
||
|
Complex: function Complex(x) {
|
||
|
throw new Error(complexErr);
|
||
|
},
|
||
|
'Complex, number': function ComplexNumber(x, y) {
|
||
|
throw new Error(complexErr);
|
||
|
},
|
||
|
'BigNumber, BigNumber': _bigNthRoot,
|
||
|
'Array | Matrix': function ArrayMatrix(x) {
|
||
|
return this(x, 2);
|
||
|
},
|
||
|
'SparseMatrix, SparseMatrix': function SparseMatrixSparseMatrix(x, y) {
|
||
|
// density must be one (no zeros in matrix)
|
||
|
if (y.density() === 1) {
|
||
|
// sparse + sparse
|
||
|
return algorithm06(x, y, this);
|
||
|
} else {
|
||
|
// throw exception
|
||
|
throw new Error('Root must be non-zero');
|
||
|
}
|
||
|
},
|
||
|
'SparseMatrix, DenseMatrix': function SparseMatrixDenseMatrix(x, y) {
|
||
|
return algorithm02(y, x, this, true);
|
||
|
},
|
||
|
'DenseMatrix, SparseMatrix': function DenseMatrixSparseMatrix(x, y) {
|
||
|
// density must be one (no zeros in matrix)
|
||
|
if (y.density() === 1) {
|
||
|
// dense + sparse
|
||
|
return algorithm01(x, y, this, false);
|
||
|
} else {
|
||
|
// throw exception
|
||
|
throw new Error('Root must be non-zero');
|
||
|
}
|
||
|
},
|
||
|
'DenseMatrix, DenseMatrix': function DenseMatrixDenseMatrix(x, y) {
|
||
|
return algorithm13(x, y, this);
|
||
|
},
|
||
|
'Array, Array': function ArrayArray(x, y) {
|
||
|
// use matrix implementation
|
||
|
return this(matrix(x), matrix(y)).valueOf();
|
||
|
},
|
||
|
'Array, Matrix': function ArrayMatrix(x, y) {
|
||
|
// use matrix implementation
|
||
|
return this(matrix(x), y);
|
||
|
},
|
||
|
'Matrix, Array': function MatrixArray(x, y) {
|
||
|
// use matrix implementation
|
||
|
return this(x, matrix(y));
|
||
|
},
|
||
|
'SparseMatrix, number | BigNumber': function SparseMatrixNumberBigNumber(x, y) {
|
||
|
return algorithm11(x, y, this, false);
|
||
|
},
|
||
|
'DenseMatrix, number | BigNumber': function DenseMatrixNumberBigNumber(x, y) {
|
||
|
return algorithm14(x, y, this, false);
|
||
|
},
|
||
|
'number | BigNumber, SparseMatrix': function numberBigNumberSparseMatrix(x, y) {
|
||
|
// density must be one (no zeros in matrix)
|
||
|
if (y.density() === 1) {
|
||
|
// sparse - scalar
|
||
|
return algorithm11(y, x, this, true);
|
||
|
} else {
|
||
|
// throw exception
|
||
|
throw new Error('Root must be non-zero');
|
||
|
}
|
||
|
},
|
||
|
'number | BigNumber, DenseMatrix': function numberBigNumberDenseMatrix(x, y) {
|
||
|
return algorithm14(y, x, this, true);
|
||
|
},
|
||
|
'Array, number | BigNumber': function ArrayNumberBigNumber(x, y) {
|
||
|
// use matrix implementation
|
||
|
return this(matrix(x), y).valueOf();
|
||
|
},
|
||
|
'number | BigNumber, Array': function numberBigNumberArray(x, y) {
|
||
|
// use matrix implementation
|
||
|
return this(x, matrix(y)).valueOf();
|
||
|
}
|
||
|
});
|
||
|
/**
|
||
|
* Calculate the nth root of a for BigNumbers, solve x^root == a
|
||
|
* https://rosettacode.org/wiki/Nth_root#JavaScript
|
||
|
* @param {BigNumber} a
|
||
|
* @param {BigNumber} root
|
||
|
* @private
|
||
|
*/
|
||
|
|
||
|
function _bigNthRoot(a, root) {
|
||
|
var precision = _BigNumber.precision;
|
||
|
|
||
|
var Big = _BigNumber.clone({
|
||
|
precision: precision + 2
|
||
|
});
|
||
|
|
||
|
var zero = new _BigNumber(0);
|
||
|
var one = new Big(1);
|
||
|
var inv = root.isNegative();
|
||
|
|
||
|
if (inv) {
|
||
|
root = root.neg();
|
||
|
}
|
||
|
|
||
|
if (root.isZero()) {
|
||
|
throw new Error('Root must be non-zero');
|
||
|
}
|
||
|
|
||
|
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
|
||
|
throw new Error('Root must be odd when a is negative.');
|
||
|
} // edge cases zero and infinity
|
||
|
|
||
|
|
||
|
if (a.isZero()) {
|
||
|
return inv ? new Big(Infinity) : 0;
|
||
|
}
|
||
|
|
||
|
if (!a.isFinite()) {
|
||
|
return inv ? zero : a;
|
||
|
}
|
||
|
|
||
|
var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer,
|
||
|
// so (-1) ^ (1/root) = -1
|
||
|
|
||
|
x = a.isNeg() ? x.neg() : x;
|
||
|
return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision));
|
||
|
}
|
||
|
});
|
||
|
exports.createNthRoot = createNthRoot;
|
||
|
var createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], function (_ref2) {
|
||
|
var typed = _ref2.typed;
|
||
|
return typed(name, {
|
||
|
number: _index.nthRootNumber,
|
||
|
'number, number': _index.nthRootNumber
|
||
|
});
|
||
|
});
|
||
|
exports.createNthRootNumber = createNthRootNumber;
|