912 lines
24 KiB
JavaScript
912 lines
24 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createMultiply = void 0;
|
||
|
|
||
|
var _factory = require("../../utils/factory.js");
|
||
|
|
||
|
var _is = require("../../utils/is.js");
|
||
|
|
||
|
var _object = require("../../utils/object.js");
|
||
|
|
||
|
var _array = require("../../utils/array.js");
|
||
|
|
||
|
var _algorithm = require("../../type/matrix/utils/algorithm11.js");
|
||
|
|
||
|
var _algorithm2 = require("../../type/matrix/utils/algorithm14.js");
|
||
|
|
||
|
var name = 'multiply';
|
||
|
var dependencies = ['typed', 'matrix', 'addScalar', 'multiplyScalar', 'equalScalar', 'dot'];
|
||
|
var createMultiply = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var typed = _ref.typed,
|
||
|
matrix = _ref.matrix,
|
||
|
addScalar = _ref.addScalar,
|
||
|
multiplyScalar = _ref.multiplyScalar,
|
||
|
equalScalar = _ref.equalScalar,
|
||
|
dot = _ref.dot;
|
||
|
var algorithm11 = (0, _algorithm.createAlgorithm11)({
|
||
|
typed: typed,
|
||
|
equalScalar: equalScalar
|
||
|
});
|
||
|
var algorithm14 = (0, _algorithm2.createAlgorithm14)({
|
||
|
typed: typed
|
||
|
});
|
||
|
|
||
|
function _validateMatrixDimensions(size1, size2) {
|
||
|
// check left operand dimensions
|
||
|
switch (size1.length) {
|
||
|
case 1:
|
||
|
// check size2
|
||
|
switch (size2.length) {
|
||
|
case 1:
|
||
|
// Vector x Vector
|
||
|
if (size1[0] !== size2[0]) {
|
||
|
// throw error
|
||
|
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
// Vector x Matrix
|
||
|
if (size1[0] !== size2[0]) {
|
||
|
// throw error
|
||
|
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
// check size2
|
||
|
switch (size2.length) {
|
||
|
case 1:
|
||
|
// Matrix x Vector
|
||
|
if (size1[1] !== size2[0]) {
|
||
|
// throw error
|
||
|
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
// Matrix x Matrix
|
||
|
if (size1[1] !== size2[0]) {
|
||
|
// throw error
|
||
|
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)');
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a Dense Vector (N)
|
||
|
* @param {Matrix} b Dense Vector (N)
|
||
|
*
|
||
|
* @return {number} Scalar value
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyVectorVector(a, b, n) {
|
||
|
// check empty vector
|
||
|
if (n === 0) {
|
||
|
throw new Error('Cannot multiply two empty vectors');
|
||
|
}
|
||
|
|
||
|
return dot(a, b);
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a Dense Vector (M)
|
||
|
* @param {Matrix} b Matrix (MxN)
|
||
|
*
|
||
|
* @return {Matrix} Dense Vector (N)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyVectorMatrix(a, b) {
|
||
|
// process storage
|
||
|
if (b.storage() !== 'dense') {
|
||
|
throw new Error('Support for SparseMatrix not implemented');
|
||
|
}
|
||
|
|
||
|
return _multiplyVectorDenseMatrix(a, b);
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a Dense Vector (M)
|
||
|
* @param {Matrix} b Dense Matrix (MxN)
|
||
|
*
|
||
|
* @return {Matrix} Dense Vector (N)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyVectorDenseMatrix(a, b) {
|
||
|
// a dense
|
||
|
var adata = a._data;
|
||
|
var asize = a._size;
|
||
|
var adt = a._datatype; // b dense
|
||
|
|
||
|
var bdata = b._data;
|
||
|
var bsize = b._size;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var alength = asize[0];
|
||
|
var bcolumns = bsize[1]; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var c = []; // loop matrix columns
|
||
|
|
||
|
for (var j = 0; j < bcolumns; j++) {
|
||
|
// sum (do not initialize it with zero)
|
||
|
var sum = mf(adata[0], bdata[0][j]); // loop vector
|
||
|
|
||
|
for (var i = 1; i < alength; i++) {
|
||
|
// multiply & accumulate
|
||
|
sum = af(sum, mf(adata[i], bdata[i][j]));
|
||
|
}
|
||
|
|
||
|
c[j] = sum;
|
||
|
} // return matrix
|
||
|
|
||
|
|
||
|
return a.createDenseMatrix({
|
||
|
data: c,
|
||
|
size: [bcolumns],
|
||
|
datatype: dt
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a Matrix (MxN)
|
||
|
* @param {Matrix} b Dense Vector (N)
|
||
|
*
|
||
|
* @return {Matrix} Dense Vector (M)
|
||
|
*/
|
||
|
|
||
|
|
||
|
var _multiplyMatrixVector = typed('_multiplyMatrixVector', {
|
||
|
'DenseMatrix, any': _multiplyDenseMatrixVector,
|
||
|
'SparseMatrix, any': _multiplySparseMatrixVector
|
||
|
});
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a Matrix (MxN)
|
||
|
* @param {Matrix} b Matrix (NxC)
|
||
|
*
|
||
|
* @return {Matrix} Matrix (MxC)
|
||
|
*/
|
||
|
|
||
|
|
||
|
var _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
|
||
|
'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
|
||
|
'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
|
||
|
'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
|
||
|
'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
|
||
|
});
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a DenseMatrix (MxN)
|
||
|
* @param {Matrix} b Dense Vector (N)
|
||
|
*
|
||
|
* @return {Matrix} Dense Vector (M)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyDenseMatrixVector(a, b) {
|
||
|
// a dense
|
||
|
var adata = a._data;
|
||
|
var asize = a._size;
|
||
|
var adt = a._datatype; // b dense
|
||
|
|
||
|
var bdata = b._data;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var arows = asize[0];
|
||
|
var acolumns = asize[1]; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var c = []; // loop matrix a rows
|
||
|
|
||
|
for (var i = 0; i < arows; i++) {
|
||
|
// current row
|
||
|
var row = adata[i]; // sum (do not initialize it with zero)
|
||
|
|
||
|
var sum = mf(row[0], bdata[0]); // loop matrix a columns
|
||
|
|
||
|
for (var j = 1; j < acolumns; j++) {
|
||
|
// multiply & accumulate
|
||
|
sum = af(sum, mf(row[j], bdata[j]));
|
||
|
}
|
||
|
|
||
|
c[i] = sum;
|
||
|
} // return matrix
|
||
|
|
||
|
|
||
|
return a.createDenseMatrix({
|
||
|
data: c,
|
||
|
size: [arows],
|
||
|
datatype: dt
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a DenseMatrix (MxN)
|
||
|
* @param {Matrix} b DenseMatrix (NxC)
|
||
|
*
|
||
|
* @return {Matrix} DenseMatrix (MxC)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyDenseMatrixDenseMatrix(a, b) {
|
||
|
// a dense
|
||
|
var adata = a._data;
|
||
|
var asize = a._size;
|
||
|
var adt = a._datatype; // b dense
|
||
|
|
||
|
var bdata = b._data;
|
||
|
var bsize = b._size;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var arows = asize[0];
|
||
|
var acolumns = asize[1];
|
||
|
var bcolumns = bsize[1]; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var c = []; // loop matrix a rows
|
||
|
|
||
|
for (var i = 0; i < arows; i++) {
|
||
|
// current row
|
||
|
var row = adata[i]; // initialize row array
|
||
|
|
||
|
c[i] = []; // loop matrix b columns
|
||
|
|
||
|
for (var j = 0; j < bcolumns; j++) {
|
||
|
// sum (avoid initializing sum to zero)
|
||
|
var sum = mf(row[0], bdata[0][j]); // loop matrix a columns
|
||
|
|
||
|
for (var x = 1; x < acolumns; x++) {
|
||
|
// multiply & accumulate
|
||
|
sum = af(sum, mf(row[x], bdata[x][j]));
|
||
|
}
|
||
|
|
||
|
c[i][j] = sum;
|
||
|
}
|
||
|
} // return matrix
|
||
|
|
||
|
|
||
|
return a.createDenseMatrix({
|
||
|
data: c,
|
||
|
size: [arows, bcolumns],
|
||
|
datatype: dt
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a DenseMatrix (MxN)
|
||
|
* @param {Matrix} b SparseMatrix (NxC)
|
||
|
*
|
||
|
* @return {Matrix} SparseMatrix (MxC)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplyDenseMatrixSparseMatrix(a, b) {
|
||
|
// a dense
|
||
|
var adata = a._data;
|
||
|
var asize = a._size;
|
||
|
var adt = a._datatype; // b sparse
|
||
|
|
||
|
var bvalues = b._values;
|
||
|
var bindex = b._index;
|
||
|
var bptr = b._ptr;
|
||
|
var bsize = b._size;
|
||
|
var bdt = b._datatype; // validate b matrix
|
||
|
|
||
|
if (!bvalues) {
|
||
|
throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix');
|
||
|
} // rows & columns
|
||
|
|
||
|
|
||
|
var arows = asize[0];
|
||
|
var bcolumns = bsize[1]; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // equalScalar signature to use
|
||
|
|
||
|
var eq = equalScalar; // zero value
|
||
|
|
||
|
var zero = 0; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
|
||
|
|
||
|
zero = typed.convert(0, dt);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var cvalues = [];
|
||
|
var cindex = [];
|
||
|
var cptr = []; // c matrix
|
||
|
|
||
|
var c = b.createSparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [arows, bcolumns],
|
||
|
datatype: dt
|
||
|
}); // loop b columns
|
||
|
|
||
|
for (var jb = 0; jb < bcolumns; jb++) {
|
||
|
// update ptr
|
||
|
cptr[jb] = cindex.length; // indeces in column jb
|
||
|
|
||
|
var kb0 = bptr[jb];
|
||
|
var kb1 = bptr[jb + 1]; // do not process column jb if no data exists
|
||
|
|
||
|
if (kb1 > kb0) {
|
||
|
// last row mark processed
|
||
|
var last = 0; // loop a rows
|
||
|
|
||
|
for (var i = 0; i < arows; i++) {
|
||
|
// column mark
|
||
|
var mark = i + 1; // C[i, jb]
|
||
|
|
||
|
var cij = void 0; // values in b column j
|
||
|
|
||
|
for (var kb = kb0; kb < kb1; kb++) {
|
||
|
// row
|
||
|
var ib = bindex[kb]; // check value has been initialized
|
||
|
|
||
|
if (last !== mark) {
|
||
|
// first value in column jb
|
||
|
cij = mf(adata[i][ib], bvalues[kb]); // update mark
|
||
|
|
||
|
last = mark;
|
||
|
} else {
|
||
|
// accumulate value
|
||
|
cij = af(cij, mf(adata[i][ib], bvalues[kb]));
|
||
|
}
|
||
|
} // check column has been processed and value != 0
|
||
|
|
||
|
|
||
|
if (last === mark && !eq(cij, zero)) {
|
||
|
// push row & value
|
||
|
cindex.push(i);
|
||
|
cvalues.push(cij);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // update ptr
|
||
|
|
||
|
|
||
|
cptr[bcolumns] = cindex.length; // return sparse matrix
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a SparseMatrix (MxN)
|
||
|
* @param {Matrix} b Dense Vector (N)
|
||
|
*
|
||
|
* @return {Matrix} SparseMatrix (M, 1)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplySparseMatrixVector(a, b) {
|
||
|
// a sparse
|
||
|
var avalues = a._values;
|
||
|
var aindex = a._index;
|
||
|
var aptr = a._ptr;
|
||
|
var adt = a._datatype; // validate a matrix
|
||
|
|
||
|
if (!avalues) {
|
||
|
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
|
||
|
} // b dense
|
||
|
|
||
|
|
||
|
var bdata = b._data;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var arows = a._size[0];
|
||
|
var brows = b._size[0]; // result
|
||
|
|
||
|
var cvalues = [];
|
||
|
var cindex = [];
|
||
|
var cptr = []; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // equalScalar signature to use
|
||
|
|
||
|
var eq = equalScalar; // zero value
|
||
|
|
||
|
var zero = 0; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
|
||
|
|
||
|
zero = typed.convert(0, dt);
|
||
|
} // workspace
|
||
|
|
||
|
|
||
|
var x = []; // vector with marks indicating a value x[i] exists in a given column
|
||
|
|
||
|
var w = []; // update ptr
|
||
|
|
||
|
cptr[0] = 0; // rows in b
|
||
|
|
||
|
for (var ib = 0; ib < brows; ib++) {
|
||
|
// b[ib]
|
||
|
var vbi = bdata[ib]; // check b[ib] != 0, avoid loops
|
||
|
|
||
|
if (!eq(vbi, zero)) {
|
||
|
// A values & index in ib column
|
||
|
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
||
|
// a row
|
||
|
var ia = aindex[ka]; // check value exists in current j
|
||
|
|
||
|
if (!w[ia]) {
|
||
|
// ia is new entry in j
|
||
|
w[ia] = true; // add i to pattern of C
|
||
|
|
||
|
cindex.push(ia); // x(ia) = A
|
||
|
|
||
|
x[ia] = mf(vbi, avalues[ka]);
|
||
|
} else {
|
||
|
// i exists in C already
|
||
|
x[ia] = af(x[ia], mf(vbi, avalues[ka]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // copy values from x to column jb of c
|
||
|
|
||
|
|
||
|
for (var p1 = cindex.length, p = 0; p < p1; p++) {
|
||
|
// row
|
||
|
var ic = cindex[p]; // copy value
|
||
|
|
||
|
cvalues[p] = x[ic];
|
||
|
} // update ptr
|
||
|
|
||
|
|
||
|
cptr[1] = cindex.length; // return sparse matrix
|
||
|
|
||
|
return a.createSparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [arows, 1],
|
||
|
datatype: dt
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a SparseMatrix (MxN)
|
||
|
* @param {Matrix} b DenseMatrix (NxC)
|
||
|
*
|
||
|
* @return {Matrix} SparseMatrix (MxC)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplySparseMatrixDenseMatrix(a, b) {
|
||
|
// a sparse
|
||
|
var avalues = a._values;
|
||
|
var aindex = a._index;
|
||
|
var aptr = a._ptr;
|
||
|
var adt = a._datatype; // validate a matrix
|
||
|
|
||
|
if (!avalues) {
|
||
|
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
|
||
|
} // b dense
|
||
|
|
||
|
|
||
|
var bdata = b._data;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var arows = a._size[0];
|
||
|
var brows = b._size[0];
|
||
|
var bcolumns = b._size[1]; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // equalScalar signature to use
|
||
|
|
||
|
var eq = equalScalar; // zero value
|
||
|
|
||
|
var zero = 0; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
|
||
|
|
||
|
zero = typed.convert(0, dt);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var cvalues = [];
|
||
|
var cindex = [];
|
||
|
var cptr = []; // c matrix
|
||
|
|
||
|
var c = a.createSparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [arows, bcolumns],
|
||
|
datatype: dt
|
||
|
}); // workspace
|
||
|
|
||
|
var x = []; // vector with marks indicating a value x[i] exists in a given column
|
||
|
|
||
|
var w = []; // loop b columns
|
||
|
|
||
|
for (var jb = 0; jb < bcolumns; jb++) {
|
||
|
// update ptr
|
||
|
cptr[jb] = cindex.length; // mark in workspace for current column
|
||
|
|
||
|
var mark = jb + 1; // rows in jb
|
||
|
|
||
|
for (var ib = 0; ib < brows; ib++) {
|
||
|
// b[ib, jb]
|
||
|
var vbij = bdata[ib][jb]; // check b[ib, jb] != 0, avoid loops
|
||
|
|
||
|
if (!eq(vbij, zero)) {
|
||
|
// A values & index in ib column
|
||
|
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
||
|
// a row
|
||
|
var ia = aindex[ka]; // check value exists in current j
|
||
|
|
||
|
if (w[ia] !== mark) {
|
||
|
// ia is new entry in j
|
||
|
w[ia] = mark; // add i to pattern of C
|
||
|
|
||
|
cindex.push(ia); // x(ia) = A
|
||
|
|
||
|
x[ia] = mf(vbij, avalues[ka]);
|
||
|
} else {
|
||
|
// i exists in C already
|
||
|
x[ia] = af(x[ia], mf(vbij, avalues[ka]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // copy values from x to column jb of c
|
||
|
|
||
|
|
||
|
for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
var ic = cindex[p]; // copy value
|
||
|
|
||
|
cvalues[p] = x[ic];
|
||
|
}
|
||
|
} // update ptr
|
||
|
|
||
|
|
||
|
cptr[bcolumns] = cindex.length; // return sparse matrix
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
/**
|
||
|
* C = A * B
|
||
|
*
|
||
|
* @param {Matrix} a SparseMatrix (MxN)
|
||
|
* @param {Matrix} b SparseMatrix (NxC)
|
||
|
*
|
||
|
* @return {Matrix} SparseMatrix (MxC)
|
||
|
*/
|
||
|
|
||
|
|
||
|
function _multiplySparseMatrixSparseMatrix(a, b) {
|
||
|
// a sparse
|
||
|
var avalues = a._values;
|
||
|
var aindex = a._index;
|
||
|
var aptr = a._ptr;
|
||
|
var adt = a._datatype; // b sparse
|
||
|
|
||
|
var bvalues = b._values;
|
||
|
var bindex = b._index;
|
||
|
var bptr = b._ptr;
|
||
|
var bdt = b._datatype; // rows & columns
|
||
|
|
||
|
var arows = a._size[0];
|
||
|
var bcolumns = b._size[1]; // flag indicating both matrices (a & b) contain data
|
||
|
|
||
|
var values = avalues && bvalues; // datatype
|
||
|
|
||
|
var dt; // addScalar signature to use
|
||
|
|
||
|
var af = addScalar; // multiplyScalar signature to use
|
||
|
|
||
|
var mf = multiplyScalar; // process data types
|
||
|
|
||
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
||
|
// datatype
|
||
|
dt = adt; // find signatures that matches (dt, dt)
|
||
|
|
||
|
af = typed.find(addScalar, [dt, dt]);
|
||
|
mf = typed.find(multiplyScalar, [dt, dt]);
|
||
|
} // result
|
||
|
|
||
|
|
||
|
var cvalues = values ? [] : undefined;
|
||
|
var cindex = [];
|
||
|
var cptr = []; // c matrix
|
||
|
|
||
|
var c = a.createSparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [arows, bcolumns],
|
||
|
datatype: dt
|
||
|
}); // workspace
|
||
|
|
||
|
var x = values ? [] : undefined; // vector with marks indicating a value x[i] exists in a given column
|
||
|
|
||
|
var w = []; // variables
|
||
|
|
||
|
var ka, ka0, ka1, kb, kb0, kb1, ia, ib; // loop b columns
|
||
|
|
||
|
for (var jb = 0; jb < bcolumns; jb++) {
|
||
|
// update ptr
|
||
|
cptr[jb] = cindex.length; // mark in workspace for current column
|
||
|
|
||
|
var mark = jb + 1; // B values & index in j
|
||
|
|
||
|
for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
|
||
|
// b row
|
||
|
ib = bindex[kb]; // check we need to process values
|
||
|
|
||
|
if (values) {
|
||
|
// loop values in a[:,ib]
|
||
|
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
||
|
// row
|
||
|
ia = aindex[ka]; // check value exists in current j
|
||
|
|
||
|
if (w[ia] !== mark) {
|
||
|
// ia is new entry in j
|
||
|
w[ia] = mark; // add i to pattern of C
|
||
|
|
||
|
cindex.push(ia); // x(ia) = A
|
||
|
|
||
|
x[ia] = mf(bvalues[kb], avalues[ka]);
|
||
|
} else {
|
||
|
// i exists in C already
|
||
|
x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]));
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// loop values in a[:,ib]
|
||
|
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
||
|
// row
|
||
|
ia = aindex[ka]; // check value exists in current j
|
||
|
|
||
|
if (w[ia] !== mark) {
|
||
|
// ia is new entry in j
|
||
|
w[ia] = mark; // add i to pattern of C
|
||
|
|
||
|
cindex.push(ia);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // check we need to process matrix values (pattern matrix)
|
||
|
|
||
|
|
||
|
if (values) {
|
||
|
// copy values from x to column jb of c
|
||
|
for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
var ic = cindex[p]; // copy value
|
||
|
|
||
|
cvalues[p] = x[ic];
|
||
|
}
|
||
|
}
|
||
|
} // update ptr
|
||
|
|
||
|
|
||
|
cptr[bcolumns] = cindex.length; // return sparse matrix
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
/**
|
||
|
* Multiply two or more values, `x * y`.
|
||
|
* For matrices, the matrix product is calculated.
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.multiply(x, y)
|
||
|
* math.multiply(x, y, z, ...)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* math.multiply(4, 5.2) // returns number 20.8
|
||
|
* math.multiply(2, 3, 4) // returns number 24
|
||
|
*
|
||
|
* const a = math.complex(2, 3)
|
||
|
* const b = math.complex(4, 1)
|
||
|
* math.multiply(a, b) // returns Complex 5 + 14i
|
||
|
*
|
||
|
* const c = [[1, 2], [4, 3]]
|
||
|
* const d = [[1, 2, 3], [3, -4, 7]]
|
||
|
* math.multiply(c, d) // returns Array [[7, -6, 17], [13, -4, 33]]
|
||
|
*
|
||
|
* const e = math.unit('2.1 km')
|
||
|
* math.multiply(3, e) // returns Unit 6.3 km
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* divide, prod, cross, dot
|
||
|
*
|
||
|
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
|
||
|
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
|
||
|
* @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
|
||
|
*/
|
||
|
|
||
|
|
||
|
return typed(name, (0, _object.extend)({
|
||
|
// we extend the signatures of multiplyScalar with signatures dealing with matrices
|
||
|
'Array, Array': function ArrayArray(x, y) {
|
||
|
// check dimensions
|
||
|
_validateMatrixDimensions((0, _array.arraySize)(x), (0, _array.arraySize)(y)); // use dense matrix implementation
|
||
|
|
||
|
|
||
|
var m = this(matrix(x), matrix(y)); // return array or scalar
|
||
|
|
||
|
return (0, _is.isMatrix)(m) ? m.valueOf() : m;
|
||
|
},
|
||
|
'Matrix, Matrix': function MatrixMatrix(x, y) {
|
||
|
// dimensions
|
||
|
var xsize = x.size();
|
||
|
var ysize = y.size(); // check dimensions
|
||
|
|
||
|
_validateMatrixDimensions(xsize, ysize); // process dimensions
|
||
|
|
||
|
|
||
|
if (xsize.length === 1) {
|
||
|
// process y dimensions
|
||
|
if (ysize.length === 1) {
|
||
|
// Vector * Vector
|
||
|
return _multiplyVectorVector(x, y, xsize[0]);
|
||
|
} // Vector * Matrix
|
||
|
|
||
|
|
||
|
return _multiplyVectorMatrix(x, y);
|
||
|
} // process y dimensions
|
||
|
|
||
|
|
||
|
if (ysize.length === 1) {
|
||
|
// Matrix * Vector
|
||
|
return _multiplyMatrixVector(x, y);
|
||
|
} // Matrix * Matrix
|
||
|
|
||
|
|
||
|
return _multiplyMatrixMatrix(x, y);
|
||
|
},
|
||
|
'Matrix, Array': function MatrixArray(x, y) {
|
||
|
// use Matrix * Matrix implementation
|
||
|
return this(x, matrix(y));
|
||
|
},
|
||
|
'Array, Matrix': function ArrayMatrix(x, y) {
|
||
|
// use Matrix * Matrix implementation
|
||
|
return this(matrix(x, y.storage()), y);
|
||
|
},
|
||
|
'SparseMatrix, any': function SparseMatrixAny(x, y) {
|
||
|
return algorithm11(x, y, multiplyScalar, false);
|
||
|
},
|
||
|
'DenseMatrix, any': function DenseMatrixAny(x, y) {
|
||
|
return algorithm14(x, y, multiplyScalar, false);
|
||
|
},
|
||
|
'any, SparseMatrix': function anySparseMatrix(x, y) {
|
||
|
return algorithm11(y, x, multiplyScalar, true);
|
||
|
},
|
||
|
'any, DenseMatrix': function anyDenseMatrix(x, y) {
|
||
|
return algorithm14(y, x, multiplyScalar, true);
|
||
|
},
|
||
|
'Array, any': function ArrayAny(x, y) {
|
||
|
// use matrix implementation
|
||
|
return algorithm14(matrix(x), y, multiplyScalar, false).valueOf();
|
||
|
},
|
||
|
'any, Array': function anyArray(x, y) {
|
||
|
// use matrix implementation
|
||
|
return algorithm14(matrix(y), x, multiplyScalar, true).valueOf();
|
||
|
},
|
||
|
'any, any': multiplyScalar,
|
||
|
'any, any, ...any': function anyAnyAny(x, y, rest) {
|
||
|
var result = this(x, y);
|
||
|
|
||
|
for (var i = 0; i < rest.length; i++) {
|
||
|
result = this(result, rest[i]);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
}, multiplyScalar.signatures));
|
||
|
});
|
||
|
exports.createMultiply = createMultiply;
|