simple-squiggle/node_modules/mathjs/lib/cjs/function/arithmetic/multiply.js

912 lines
24 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMultiply = void 0;
var _factory = require("../../utils/factory.js");
var _is = require("../../utils/is.js");
var _object = require("../../utils/object.js");
var _array = require("../../utils/array.js");
var _algorithm = require("../../type/matrix/utils/algorithm11.js");
var _algorithm2 = require("../../type/matrix/utils/algorithm14.js");
var name = 'multiply';
var dependencies = ['typed', 'matrix', 'addScalar', 'multiplyScalar', 'equalScalar', 'dot'];
var createMultiply = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
addScalar = _ref.addScalar,
multiplyScalar = _ref.multiplyScalar,
equalScalar = _ref.equalScalar,
dot = _ref.dot;
var algorithm11 = (0, _algorithm.createAlgorithm11)({
typed: typed,
equalScalar: equalScalar
});
var algorithm14 = (0, _algorithm2.createAlgorithm14)({
typed: typed
});
function _validateMatrixDimensions(size1, size2) {
// check left operand dimensions
switch (size1.length) {
case 1:
// check size2
switch (size2.length) {
case 1:
// Vector x Vector
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length');
}
break;
case 2:
// Vector x Matrix
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
}
break;
case 2:
// check size2
switch (size2.length) {
case 1:
// Matrix x Vector
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')');
}
break;
case 2:
// Matrix x Matrix
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)');
}
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (N)
* @param {Matrix} b Dense Vector (N)
*
* @return {number} Scalar value
*/
function _multiplyVectorVector(a, b, n) {
// check empty vector
if (n === 0) {
throw new Error('Cannot multiply two empty vectors');
}
return dot(a, b);
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorMatrix(a, b) {
// process storage
if (b.storage() !== 'dense') {
throw new Error('Support for SparseMatrix not implemented');
}
return _multiplyVectorDenseMatrix(a, b);
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Dense Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorDenseMatrix(a, b) {
// a dense
var adata = a._data;
var asize = a._size;
var adt = a._datatype; // b dense
var bdata = b._data;
var bsize = b._size;
var bdt = b._datatype; // rows & columns
var alength = asize[0];
var bcolumns = bsize[1]; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
} // result
var c = []; // loop matrix columns
for (var j = 0; j < bcolumns; j++) {
// sum (do not initialize it with zero)
var sum = mf(adata[0], bdata[0][j]); // loop vector
for (var i = 1; i < alength; i++) {
// multiply & accumulate
sum = af(sum, mf(adata[i], bdata[i][j]));
}
c[j] = sum;
} // return matrix
return a.createDenseMatrix({
data: c,
size: [bcolumns],
datatype: dt
});
}
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
var _multiplyMatrixVector = typed('_multiplyMatrixVector', {
'DenseMatrix, any': _multiplyDenseMatrixVector,
'SparseMatrix, any': _multiplySparseMatrixVector
});
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Matrix (NxC)
*
* @return {Matrix} Matrix (MxC)
*/
var _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
});
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
function _multiplyDenseMatrixVector(a, b) {
// a dense
var adata = a._data;
var asize = a._size;
var adt = a._datatype; // b dense
var bdata = b._data;
var bdt = b._datatype; // rows & columns
var arows = asize[0];
var acolumns = asize[1]; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
} // result
var c = []; // loop matrix a rows
for (var i = 0; i < arows; i++) {
// current row
var row = adata[i]; // sum (do not initialize it with zero)
var sum = mf(row[0], bdata[0]); // loop matrix a columns
for (var j = 1; j < acolumns; j++) {
// multiply & accumulate
sum = af(sum, mf(row[j], bdata[j]));
}
c[i] = sum;
} // return matrix
return a.createDenseMatrix({
data: c,
size: [arows],
datatype: dt
});
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} DenseMatrix (MxC)
*/
function _multiplyDenseMatrixDenseMatrix(a, b) {
// a dense
var adata = a._data;
var asize = a._size;
var adt = a._datatype; // b dense
var bdata = b._data;
var bsize = b._size;
var bdt = b._datatype; // rows & columns
var arows = asize[0];
var acolumns = asize[1];
var bcolumns = bsize[1]; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
} // result
var c = []; // loop matrix a rows
for (var i = 0; i < arows; i++) {
// current row
var row = adata[i]; // initialize row array
c[i] = []; // loop matrix b columns
for (var j = 0; j < bcolumns; j++) {
// sum (avoid initializing sum to zero)
var sum = mf(row[0], bdata[0][j]); // loop matrix a columns
for (var x = 1; x < acolumns; x++) {
// multiply & accumulate
sum = af(sum, mf(row[x], bdata[x][j]));
}
c[i][j] = sum;
}
} // return matrix
return a.createDenseMatrix({
data: c,
size: [arows, bcolumns],
datatype: dt
});
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplyDenseMatrixSparseMatrix(a, b) {
// a dense
var adata = a._data;
var asize = a._size;
var adt = a._datatype; // b sparse
var bvalues = b._values;
var bindex = b._index;
var bptr = b._ptr;
var bsize = b._size;
var bdt = b._datatype; // validate b matrix
if (!bvalues) {
throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix');
} // rows & columns
var arows = asize[0];
var bcolumns = bsize[1]; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // equalScalar signature to use
var eq = equalScalar; // zero value
var zero = 0; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
zero = typed.convert(0, dt);
} // result
var cvalues = [];
var cindex = [];
var cptr = []; // c matrix
var c = b.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
}); // loop b columns
for (var jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length; // indeces in column jb
var kb0 = bptr[jb];
var kb1 = bptr[jb + 1]; // do not process column jb if no data exists
if (kb1 > kb0) {
// last row mark processed
var last = 0; // loop a rows
for (var i = 0; i < arows; i++) {
// column mark
var mark = i + 1; // C[i, jb]
var cij = void 0; // values in b column j
for (var kb = kb0; kb < kb1; kb++) {
// row
var ib = bindex[kb]; // check value has been initialized
if (last !== mark) {
// first value in column jb
cij = mf(adata[i][ib], bvalues[kb]); // update mark
last = mark;
} else {
// accumulate value
cij = af(cij, mf(adata[i][ib], bvalues[kb]));
}
} // check column has been processed and value != 0
if (last === mark && !eq(cij, zero)) {
// push row & value
cindex.push(i);
cvalues.push(cij);
}
}
}
} // update ptr
cptr[bcolumns] = cindex.length; // return sparse matrix
return c;
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} SparseMatrix (M, 1)
*/
function _multiplySparseMatrixVector(a, b) {
// a sparse
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var adt = a._datatype; // validate a matrix
if (!avalues) {
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
} // b dense
var bdata = b._data;
var bdt = b._datatype; // rows & columns
var arows = a._size[0];
var brows = b._size[0]; // result
var cvalues = [];
var cindex = [];
var cptr = []; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // equalScalar signature to use
var eq = equalScalar; // zero value
var zero = 0; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
zero = typed.convert(0, dt);
} // workspace
var x = []; // vector with marks indicating a value x[i] exists in a given column
var w = []; // update ptr
cptr[0] = 0; // rows in b
for (var ib = 0; ib < brows; ib++) {
// b[ib]
var vbi = bdata[ib]; // check b[ib] != 0, avoid loops
if (!eq(vbi, zero)) {
// A values & index in ib column
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
var ia = aindex[ka]; // check value exists in current j
if (!w[ia]) {
// ia is new entry in j
w[ia] = true; // add i to pattern of C
cindex.push(ia); // x(ia) = A
x[ia] = mf(vbi, avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbi, avalues[ka]));
}
}
}
} // copy values from x to column jb of c
for (var p1 = cindex.length, p = 0; p < p1; p++) {
// row
var ic = cindex[p]; // copy value
cvalues[p] = x[ic];
} // update ptr
cptr[1] = cindex.length; // return sparse matrix
return a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, 1],
datatype: dt
});
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixDenseMatrix(a, b) {
// a sparse
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var adt = a._datatype; // validate a matrix
if (!avalues) {
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
} // b dense
var bdata = b._data;
var bdt = b._datatype; // rows & columns
var arows = a._size[0];
var brows = b._size[0];
var bcolumns = b._size[1]; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // equalScalar signature to use
var eq = equalScalar; // zero value
var zero = 0; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
zero = typed.convert(0, dt);
} // result
var cvalues = [];
var cindex = [];
var cptr = []; // c matrix
var c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
}); // workspace
var x = []; // vector with marks indicating a value x[i] exists in a given column
var w = []; // loop b columns
for (var jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length; // mark in workspace for current column
var mark = jb + 1; // rows in jb
for (var ib = 0; ib < brows; ib++) {
// b[ib, jb]
var vbij = bdata[ib][jb]; // check b[ib, jb] != 0, avoid loops
if (!eq(vbij, zero)) {
// A values & index in ib column
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
var ia = aindex[ka]; // check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark; // add i to pattern of C
cindex.push(ia); // x(ia) = A
x[ia] = mf(vbij, avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbij, avalues[ka]));
}
}
}
} // copy values from x to column jb of c
for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
var ic = cindex[p]; // copy value
cvalues[p] = x[ic];
}
} // update ptr
cptr[bcolumns] = cindex.length; // return sparse matrix
return c;
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixSparseMatrix(a, b) {
// a sparse
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var adt = a._datatype; // b sparse
var bvalues = b._values;
var bindex = b._index;
var bptr = b._ptr;
var bdt = b._datatype; // rows & columns
var arows = a._size[0];
var bcolumns = b._size[1]; // flag indicating both matrices (a & b) contain data
var values = avalues && bvalues; // datatype
var dt; // addScalar signature to use
var af = addScalar; // multiplyScalar signature to use
var mf = multiplyScalar; // process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt; // find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
} // result
var cvalues = values ? [] : undefined;
var cindex = [];
var cptr = []; // c matrix
var c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
}); // workspace
var x = values ? [] : undefined; // vector with marks indicating a value x[i] exists in a given column
var w = []; // variables
var ka, ka0, ka1, kb, kb0, kb1, ia, ib; // loop b columns
for (var jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length; // mark in workspace for current column
var mark = jb + 1; // B values & index in j
for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
// b row
ib = bindex[kb]; // check we need to process values
if (values) {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka]; // check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark; // add i to pattern of C
cindex.push(ia); // x(ia) = A
x[ia] = mf(bvalues[kb], avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]));
}
}
} else {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka]; // check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark; // add i to pattern of C
cindex.push(ia);
}
}
}
} // check we need to process matrix values (pattern matrix)
if (values) {
// copy values from x to column jb of c
for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
var ic = cindex[p]; // copy value
cvalues[p] = x[ic];
}
}
} // update ptr
cptr[bcolumns] = cindex.length; // return sparse matrix
return c;
}
/**
* Multiply two or more values, `x * y`.
* For matrices, the matrix product is calculated.
*
* Syntax:
*
* math.multiply(x, y)
* math.multiply(x, y, z, ...)
*
* Examples:
*
* math.multiply(4, 5.2) // returns number 20.8
* math.multiply(2, 3, 4) // returns number 24
*
* const a = math.complex(2, 3)
* const b = math.complex(4, 1)
* math.multiply(a, b) // returns Complex 5 + 14i
*
* const c = [[1, 2], [4, 3]]
* const d = [[1, 2, 3], [3, -4, 7]]
* math.multiply(c, d) // returns Array [[7, -6, 17], [13, -4, 33]]
*
* const e = math.unit('2.1 km')
* math.multiply(3, e) // returns Unit 6.3 km
*
* See also:
*
* divide, prod, cross, dot
*
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
* @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
*/
return typed(name, (0, _object.extend)({
// we extend the signatures of multiplyScalar with signatures dealing with matrices
'Array, Array': function ArrayArray(x, y) {
// check dimensions
_validateMatrixDimensions((0, _array.arraySize)(x), (0, _array.arraySize)(y)); // use dense matrix implementation
var m = this(matrix(x), matrix(y)); // return array or scalar
return (0, _is.isMatrix)(m) ? m.valueOf() : m;
},
'Matrix, Matrix': function MatrixMatrix(x, y) {
// dimensions
var xsize = x.size();
var ysize = y.size(); // check dimensions
_validateMatrixDimensions(xsize, ysize); // process dimensions
if (xsize.length === 1) {
// process y dimensions
if (ysize.length === 1) {
// Vector * Vector
return _multiplyVectorVector(x, y, xsize[0]);
} // Vector * Matrix
return _multiplyVectorMatrix(x, y);
} // process y dimensions
if (ysize.length === 1) {
// Matrix * Vector
return _multiplyMatrixVector(x, y);
} // Matrix * Matrix
return _multiplyMatrixMatrix(x, y);
},
'Matrix, Array': function MatrixArray(x, y) {
// use Matrix * Matrix implementation
return this(x, matrix(y));
},
'Array, Matrix': function ArrayMatrix(x, y) {
// use Matrix * Matrix implementation
return this(matrix(x, y.storage()), y);
},
'SparseMatrix, any': function SparseMatrixAny(x, y) {
return algorithm11(x, y, multiplyScalar, false);
},
'DenseMatrix, any': function DenseMatrixAny(x, y) {
return algorithm14(x, y, multiplyScalar, false);
},
'any, SparseMatrix': function anySparseMatrix(x, y) {
return algorithm11(y, x, multiplyScalar, true);
},
'any, DenseMatrix': function anyDenseMatrix(x, y) {
return algorithm14(y, x, multiplyScalar, true);
},
'Array, any': function ArrayAny(x, y) {
// use matrix implementation
return algorithm14(matrix(x), y, multiplyScalar, false).valueOf();
},
'any, Array': function anyArray(x, y) {
// use matrix implementation
return algorithm14(matrix(y), x, multiplyScalar, true).valueOf();
},
'any, any': multiplyScalar,
'any, any, ...any': function anyAnyAny(x, y, rest) {
var result = this(x, y);
for (var i = 0; i < rest.length; i++) {
result = this(result, rest[i]);
}
return result;
}
}, multiplyScalar.signatures));
});
exports.createMultiply = createMultiply;