61 lines
1.8 KiB
JavaScript
61 lines
1.8 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.csReach = csReach;
|
||
|
|
||
|
var _csMarked = require("./csMarked.js");
|
||
|
|
||
|
var _csMark = require("./csMark.js");
|
||
|
|
||
|
var _csDfs = require("./csDfs.js");
|
||
|
|
||
|
/**
|
||
|
* The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
|
||
|
* sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
|
||
|
* nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
|
||
|
*
|
||
|
* @param {Matrix} g The G matrix
|
||
|
* @param {Matrix} b The B matrix
|
||
|
* @param {Number} k The kth column in B
|
||
|
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
||
|
* The first n entries is the nonzero pattern, the last n entries is the stack
|
||
|
* @param {Array} pinv The inverse row permutation vector
|
||
|
*
|
||
|
* @return {Number} The index for the nonzero pattern
|
||
|
*
|
||
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
||
|
*/
|
||
|
function csReach(g, b, k, xi, pinv) {
|
||
|
// g arrays
|
||
|
var gptr = g._ptr;
|
||
|
var gsize = g._size; // b arrays
|
||
|
|
||
|
var bindex = b._index;
|
||
|
var bptr = b._ptr; // columns
|
||
|
|
||
|
var n = gsize[1]; // vars
|
||
|
|
||
|
var p, p0, p1; // initialize top
|
||
|
|
||
|
var top = n; // loop column indeces in B
|
||
|
|
||
|
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
|
||
|
// node i
|
||
|
var i = bindex[p]; // check node i is marked
|
||
|
|
||
|
if (!(0, _csMarked.csMarked)(gptr, i)) {
|
||
|
// start a dfs at unmarked node i
|
||
|
top = (0, _csDfs.csDfs)(i, g, top, xi, pinv);
|
||
|
}
|
||
|
} // loop columns from top -> n - 1
|
||
|
|
||
|
|
||
|
for (p = top; p < n; p++) {
|
||
|
// restore G
|
||
|
(0, _csMark.csMark)(gptr, xi[p]);
|
||
|
}
|
||
|
|
||
|
return top;
|
||
|
}
|