206 lines
5.1 KiB
JavaScript
206 lines
5.1 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createCsLu = void 0;
|
||
|
|
||
|
var _factory = require("../../../utils/factory.js");
|
||
|
|
||
|
var _csSpsolve = require("./csSpsolve.js");
|
||
|
|
||
|
var name = 'csLu';
|
||
|
var dependencies = ['abs', 'divideScalar', 'multiply', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
|
||
|
var createCsLu = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var abs = _ref.abs,
|
||
|
divideScalar = _ref.divideScalar,
|
||
|
multiply = _ref.multiply,
|
||
|
subtract = _ref.subtract,
|
||
|
larger = _ref.larger,
|
||
|
largerEq = _ref.largerEq,
|
||
|
SparseMatrix = _ref.SparseMatrix;
|
||
|
var csSpsolve = (0, _csSpsolve.createCsSpsolve)({
|
||
|
divideScalar: divideScalar,
|
||
|
multiply: multiply,
|
||
|
subtract: subtract
|
||
|
});
|
||
|
/**
|
||
|
* Computes the numeric LU factorization of the sparse matrix A. Implements a Left-looking LU factorization
|
||
|
* algorithm that computes L and U one column at a tume. At the kth step, it access columns 1 to k-1 of L
|
||
|
* and column k of A. Given the fill-reducing column ordering q (see parameter s) computes L, U and pinv so
|
||
|
* L * U = A(p, q), where p is the inverse of pinv.
|
||
|
*
|
||
|
* @param {Matrix} m The A Matrix to factorize
|
||
|
* @param {Object} s The symbolic analysis from csSqr(). Provides the fill-reducing
|
||
|
* column ordering q
|
||
|
* @param {Number} tol Partial pivoting threshold (1 for partial pivoting)
|
||
|
*
|
||
|
* @return {Number} The numeric LU factorization of A or null
|
||
|
*
|
||
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
||
|
*/
|
||
|
|
||
|
return function csLu(m, s, tol) {
|
||
|
// validate input
|
||
|
if (!m) {
|
||
|
return null;
|
||
|
} // m arrays
|
||
|
|
||
|
|
||
|
var size = m._size; // columns
|
||
|
|
||
|
var n = size[1]; // symbolic analysis result
|
||
|
|
||
|
var q;
|
||
|
var lnz = 100;
|
||
|
var unz = 100; // update symbolic analysis parameters
|
||
|
|
||
|
if (s) {
|
||
|
q = s.q;
|
||
|
lnz = s.lnz || lnz;
|
||
|
unz = s.unz || unz;
|
||
|
} // L arrays
|
||
|
|
||
|
|
||
|
var lvalues = []; // (lnz)
|
||
|
|
||
|
var lindex = []; // (lnz)
|
||
|
|
||
|
var lptr = []; // (n + 1)
|
||
|
// L
|
||
|
|
||
|
var L = new SparseMatrix({
|
||
|
values: lvalues,
|
||
|
index: lindex,
|
||
|
ptr: lptr,
|
||
|
size: [n, n]
|
||
|
}); // U arrays
|
||
|
|
||
|
var uvalues = []; // (unz)
|
||
|
|
||
|
var uindex = []; // (unz)
|
||
|
|
||
|
var uptr = []; // (n + 1)
|
||
|
// U
|
||
|
|
||
|
var U = new SparseMatrix({
|
||
|
values: uvalues,
|
||
|
index: uindex,
|
||
|
ptr: uptr,
|
||
|
size: [n, n]
|
||
|
}); // inverse of permutation vector
|
||
|
|
||
|
var pinv = []; // (n)
|
||
|
// vars
|
||
|
|
||
|
var i, p; // allocate arrays
|
||
|
|
||
|
var x = []; // (n)
|
||
|
|
||
|
var xi = []; // (2 * n)
|
||
|
// initialize variables
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
// clear workspace
|
||
|
x[i] = 0; // no rows pivotal yet
|
||
|
|
||
|
pinv[i] = -1; // no cols of L yet
|
||
|
|
||
|
lptr[i + 1] = 0;
|
||
|
} // reset number of nonzero elements in L and U
|
||
|
|
||
|
|
||
|
lnz = 0;
|
||
|
unz = 0; // compute L(:,k) and U(:,k)
|
||
|
|
||
|
for (var k = 0; k < n; k++) {
|
||
|
// update ptr
|
||
|
lptr[k] = lnz;
|
||
|
uptr[k] = unz; // apply column permutations if needed
|
||
|
|
||
|
var col = q ? q[k] : k; // solve triangular system, x = L\A(:,col)
|
||
|
|
||
|
var top = csSpsolve(L, m, col, xi, x, pinv, 1); // find pivot
|
||
|
|
||
|
var ipiv = -1;
|
||
|
var a = -1; // loop xi[] from top -> n
|
||
|
|
||
|
for (p = top; p < n; p++) {
|
||
|
// x[i] is nonzero
|
||
|
i = xi[p]; // check row i is not yet pivotal
|
||
|
|
||
|
if (pinv[i] < 0) {
|
||
|
// absolute value of x[i]
|
||
|
var xabs = abs(x[i]); // check absoulte value is greater than pivot value
|
||
|
|
||
|
if (larger(xabs, a)) {
|
||
|
// largest pivot candidate so far
|
||
|
a = xabs;
|
||
|
ipiv = i;
|
||
|
}
|
||
|
} else {
|
||
|
// x(i) is the entry U(pinv[i],k)
|
||
|
uindex[unz] = pinv[i];
|
||
|
uvalues[unz++] = x[i];
|
||
|
}
|
||
|
} // validate we found a valid pivot
|
||
|
|
||
|
|
||
|
if (ipiv === -1 || a <= 0) {
|
||
|
return null;
|
||
|
} // update actual pivot column, give preference to diagonal value
|
||
|
|
||
|
|
||
|
if (pinv[col] < 0 && largerEq(abs(x[col]), multiply(a, tol))) {
|
||
|
ipiv = col;
|
||
|
} // the chosen pivot
|
||
|
|
||
|
|
||
|
var pivot = x[ipiv]; // last entry in U(:,k) is U(k,k)
|
||
|
|
||
|
uindex[unz] = k;
|
||
|
uvalues[unz++] = pivot; // ipiv is the kth pivot row
|
||
|
|
||
|
pinv[ipiv] = k; // first entry in L(:,k) is L(k,k) = 1
|
||
|
|
||
|
lindex[lnz] = ipiv;
|
||
|
lvalues[lnz++] = 1; // L(k+1:n,k) = x / pivot
|
||
|
|
||
|
for (p = top; p < n; p++) {
|
||
|
// row
|
||
|
i = xi[p]; // check x(i) is an entry in L(:,k)
|
||
|
|
||
|
if (pinv[i] < 0) {
|
||
|
// save unpermuted row in L
|
||
|
lindex[lnz] = i; // scale pivot column
|
||
|
|
||
|
lvalues[lnz++] = divideScalar(x[i], pivot);
|
||
|
} // x[0..n-1] = 0 for next k
|
||
|
|
||
|
|
||
|
x[i] = 0;
|
||
|
}
|
||
|
} // update ptr
|
||
|
|
||
|
|
||
|
lptr[n] = lnz;
|
||
|
uptr[n] = unz; // fix row indices of L for final pinv
|
||
|
|
||
|
for (p = 0; p < lnz; p++) {
|
||
|
lindex[p] = pinv[lindex[p]];
|
||
|
} // trim arrays
|
||
|
|
||
|
|
||
|
lvalues.splice(lnz, lvalues.length - lnz);
|
||
|
lindex.splice(lnz, lindex.length - lnz);
|
||
|
uvalues.splice(unz, uvalues.length - unz);
|
||
|
uindex.splice(unz, uindex.length - unz); // return LU factor
|
||
|
|
||
|
return {
|
||
|
L: L,
|
||
|
U: U,
|
||
|
pinv: pinv
|
||
|
};
|
||
|
};
|
||
|
});
|
||
|
exports.createCsLu = createCsLu;
|