simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/decomposition/slu.js

110 lines
3.9 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createSlu = void 0;
var _number = require("../../../utils/number.js");
var _factory = require("../../../utils/factory.js");
var _csSqr = require("../sparse/csSqr.js");
var _csLu = require("../sparse/csLu.js");
var name = 'slu';
var dependencies = ['typed', 'abs', 'add', 'multiply', 'transpose', 'divideScalar', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
var createSlu = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
abs = _ref.abs,
add = _ref.add,
multiply = _ref.multiply,
transpose = _ref.transpose,
divideScalar = _ref.divideScalar,
subtract = _ref.subtract,
larger = _ref.larger,
largerEq = _ref.largerEq,
SparseMatrix = _ref.SparseMatrix;
var csSqr = (0, _csSqr.createCsSqr)({
add: add,
multiply: multiply,
transpose: transpose
});
var csLu = (0, _csLu.createCsLu)({
abs: abs,
divideScalar: divideScalar,
multiply: multiply,
subtract: subtract,
larger: larger,
largerEq: largerEq,
SparseMatrix: SparseMatrix
});
/**
* Calculate the Sparse Matrix LU decomposition with full pivoting. Sparse Matrix `A` is decomposed in two matrices (`L`, `U`) and two permutation vectors (`pinv`, `q`) where
*
* `P * A * Q = L * U`
*
* Syntax:
*
* math.slu(A, order, threshold)
*
* Examples:
*
* const A = math.sparse([[4,3], [6, 3]])
* math.slu(A, 1, 0.001)
* // returns:
* // {
* // L: [[1, 0], [1.5, 1]]
* // U: [[4, 3], [0, -1.5]]
* // p: [0, 1]
* // q: [0, 1]
* // }
*
* See also:
*
* lup, lsolve, usolve, lusolve
*
* @param {SparseMatrix} A A two dimensional sparse matrix for which to get the LU decomposition.
* @param {Number} order The Symbolic Ordering and Analysis order:
* 0 - Natural ordering, no permutation vector q is returned
* 1 - Matrix must be square, symbolic ordering and analisis is performed on M = A + A'
* 2 - Symbolic ordering and analisis is performed on M = A' * A. Dense columns from A' are dropped, A recreated from A'.
* This is appropriatefor LU factorization of unsymmetric matrices.
* 3 - Symbolic ordering and analisis is performed on M = A' * A. This is best used for LU factorization is matrix M has no dense rows.
* A dense row is a row with more than 10*sqr(columns) entries.
* @param {Number} threshold Partial pivoting threshold (1 for partial pivoting)
*
* @return {Object} The lower triangular matrix, the upper triangular matrix and the permutation vectors.
*/
return typed(name, {
'SparseMatrix, number, number': function SparseMatrixNumberNumber(a, order, threshold) {
// verify order
if (!(0, _number.isInteger)(order) || order < 0 || order > 3) {
throw new Error('Symbolic Ordering and Analysis order must be an integer number in the interval [0, 3]');
} // verify threshold
if (threshold < 0 || threshold > 1) {
throw new Error('Partial pivoting threshold must be a number from 0 to 1');
} // perform symbolic ordering and analysis
var s = csSqr(order, a, false); // perform lu decomposition
var f = csLu(a, s, threshold); // return decomposition
return {
L: f.L,
U: f.U,
p: f.pinv,
q: s.q,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\np: ' + this.p.toString() + (this.q ? '\nq: ' + this.q.toString() : '') + '\n';
}
};
}
});
});
exports.createSlu = createSlu;