simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/decomposition/lup.js

421 lines
10 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLup = void 0;
var _object = require("../../../utils/object.js");
var _factory = require("../../../utils/factory.js");
var name = 'lup';
var dependencies = ['typed', 'matrix', 'abs', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtract', 'larger', 'equalScalar', 'unaryMinus', 'DenseMatrix', 'SparseMatrix', 'Spa'];
var createLup = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
abs = _ref.abs,
addScalar = _ref.addScalar,
divideScalar = _ref.divideScalar,
multiplyScalar = _ref.multiplyScalar,
subtract = _ref.subtract,
larger = _ref.larger,
equalScalar = _ref.equalScalar,
unaryMinus = _ref.unaryMinus,
DenseMatrix = _ref.DenseMatrix,
SparseMatrix = _ref.SparseMatrix,
Spa = _ref.Spa;
/**
* Calculate the Matrix LU decomposition with partial pivoting. Matrix `A` is decomposed in two matrices (`L`, `U`) and a
* row permutation vector `p` where `A[p,:] = L * U`
*
* Syntax:
*
* math.lup(A)
*
* Example:
*
* const m = [[2, 1], [1, 4]]
* const r = math.lup(m)
* // r = {
* // L: [[1, 0], [0.5, 1]],
* // U: [[2, 1], [0, 3.5]],
* // P: [0, 1]
* // }
*
* See also:
*
* slu, lsolve, lusolve, usolve
*
* @param {Matrix | Array} A A two dimensional matrix or array for which to get the LUP decomposition.
*
* @return {{L: Array | Matrix, U: Array | Matrix, P: Array.<number>}} The lower triangular matrix, the upper triangular matrix and the permutation matrix.
*/
return typed(name, {
DenseMatrix: function DenseMatrix(m) {
return _denseLUP(m);
},
SparseMatrix: function SparseMatrix(m) {
return _sparseLUP(m);
},
Array: function Array(a) {
// create dense matrix from array
var m = matrix(a); // lup, use matrix implementation
var r = _denseLUP(m); // result
return {
L: r.L.valueOf(),
U: r.U.valueOf(),
p: r.p
};
}
});
function _denseLUP(m) {
// rows & columns
var rows = m._size[0];
var columns = m._size[1]; // minimum rows and columns
var n = Math.min(rows, columns); // matrix array, clone original data
var data = (0, _object.clone)(m._data); // l matrix arrays
var ldata = [];
var lsize = [rows, n]; // u matrix arrays
var udata = [];
var usize = [n, columns]; // vars
var i, j, k; // permutation vector
var p = [];
for (i = 0; i < rows; i++) {
p[i] = i;
} // loop columns
for (j = 0; j < columns; j++) {
// skip first column in upper triangular matrix
if (j > 0) {
// loop rows
for (i = 0; i < rows; i++) {
// min i,j
var min = Math.min(i, j); // v[i, j]
var s = 0; // loop up to min
for (k = 0; k < min; k++) {
// s = l[i, k] - data[k, j]
s = addScalar(s, multiplyScalar(data[i][k], data[k][j]));
}
data[i][j] = subtract(data[i][j], s);
}
} // row with larger value in cvector, row >= j
var pi = j;
var pabsv = 0;
var vjj = 0; // loop rows
for (i = j; i < rows; i++) {
// data @ i, j
var v = data[i][j]; // absolute value
var absv = abs(v); // value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = i; // update max value
pabsv = absv; // value @ [j, j]
vjj = v;
}
} // swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in p
p[j] = [p[pi], p[pi] = p[j]][0]; // swap j <-> pi in data
DenseMatrix._swapRows(j, pi, data);
} // check column is in lower triangular matrix
if (j < rows) {
// loop rows (lower triangular matrix)
for (i = j + 1; i < rows; i++) {
// value @ i, j
var vij = data[i][j];
if (!equalScalar(vij, 0)) {
// update data
data[i][j] = divideScalar(data[i][j], vjj);
}
}
}
} // loop columns
for (j = 0; j < columns; j++) {
// loop rows
for (i = 0; i < rows; i++) {
// initialize row in arrays
if (j === 0) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i] = [];
} // L
ldata[i] = [];
} // check we are in the upper triangular matrix
if (i < j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
} // check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 0;
}
continue;
} // diagonal value
if (i === j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
} // check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 1;
}
continue;
} // check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = 0;
} // check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = data[i][j];
}
}
} // l matrix
var l = new DenseMatrix({
data: ldata,
size: lsize
}); // u matrix
var u = new DenseMatrix({
data: udata,
size: usize
}); // p vector
var pv = [];
for (i = 0, n = p.length; i < n; i++) {
pv[p[i]] = i;
} // return matrices
return {
L: l,
U: u,
p: pv,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
function _sparseLUP(m) {
// rows & columns
var rows = m._size[0];
var columns = m._size[1]; // minimum rows and columns
var n = Math.min(rows, columns); // matrix arrays (will not be modified, thanks to permutation vector)
var values = m._values;
var index = m._index;
var ptr = m._ptr; // l matrix arrays
var lvalues = [];
var lindex = [];
var lptr = [];
var lsize = [rows, n]; // u matrix arrays
var uvalues = [];
var uindex = [];
var uptr = [];
var usize = [n, columns]; // vars
var i, j, k; // permutation vectors, (current index -> original index) and (original index -> current index)
var pvCo = [];
var pvOc = [];
for (i = 0; i < rows; i++) {
pvCo[i] = i;
pvOc[i] = i;
} // swap indices in permutation vectors (condition x < y)!
var swapIndeces = function swapIndeces(x, y) {
// find pv indeces getting data from x and y
var kx = pvOc[x];
var ky = pvOc[y]; // update permutation vector current -> original
pvCo[kx] = y;
pvCo[ky] = x; // update permutation vector original -> current
pvOc[x] = ky;
pvOc[y] = kx;
}; // loop columns
var _loop = function _loop() {
// sparse accumulator
var spa = new Spa(); // check lower triangular matrix has a value @ column j
if (j < rows) {
// update ptr
lptr.push(lvalues.length); // first value in j column for lower triangular matrix
lvalues.push(1);
lindex.push(j);
} // update ptr
uptr.push(uvalues.length); // k0 <= k < k1 where k0 = _ptr[j] && k1 = _ptr[j+1]
var k0 = ptr[j];
var k1 = ptr[j + 1]; // copy column j into sparse accumulator
for (k = k0; k < k1; k++) {
// row
i = index[k]; // copy column values into sparse accumulator (use permutation vector)
spa.set(pvCo[i], values[k]);
} // skip first column in upper triangular matrix
if (j > 0) {
// loop rows in column j (above diagonal)
spa.forEach(0, j - 1, function (k, vkj) {
// loop rows in column k (L)
SparseMatrix._forEachRow(k, lvalues, lindex, lptr, function (i, vik) {
// check row is below k
if (i > k) {
// update spa value
spa.accumulate(i, unaryMinus(multiplyScalar(vik, vkj)));
}
});
});
} // row with larger value in spa, row >= j
var pi = j;
var vjj = spa.get(j);
var pabsv = abs(vjj); // loop values in spa (order by row, below diagonal)
spa.forEach(j + 1, rows - 1, function (x, v) {
// absolute value
var absv = abs(v); // value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = x; // update max value
pabsv = absv; // value @ [j, j]
vjj = v;
}
}); // swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in L
SparseMatrix._swapRows(j, pi, lsize[1], lvalues, lindex, lptr); // swap values j <-> pi in U
SparseMatrix._swapRows(j, pi, usize[1], uvalues, uindex, uptr); // swap values in spa
spa.swap(j, pi); // update permutation vector (swap values @ j, pi)
swapIndeces(j, pi);
} // loop values in spa (order by row)
spa.forEach(0, rows - 1, function (x, v) {
// check we are above diagonal
if (x <= j) {
// update upper triangular matrix
uvalues.push(v);
uindex.push(x);
} else {
// update value
v = divideScalar(v, vjj); // check value is non zero
if (!equalScalar(v, 0)) {
// update lower triangular matrix
lvalues.push(v);
lindex.push(x);
}
}
});
};
for (j = 0; j < columns; j++) {
_loop();
} // update ptrs
uptr.push(uvalues.length);
lptr.push(lvalues.length); // return matrices
return {
L: new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: lsize
}),
U: new SparseMatrix({
values: uvalues,
index: uindex,
ptr: uptr,
size: usize
}),
p: pvCo,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
});
exports.createLup = createLup;