56 lines
1.6 KiB
JavaScript
56 lines
1.6 KiB
JavaScript
|
/**
|
||
|
* This function determines if j is a leaf of the ith row subtree.
|
||
|
* Consider A(i,j), node j in ith row subtree and return lca(jprev,j)
|
||
|
*
|
||
|
* @param {Number} i The ith row subtree
|
||
|
* @param {Number} j The node to test
|
||
|
* @param {Array} w The workspace array
|
||
|
* @param {Number} first The index offset within the workspace for the first array
|
||
|
* @param {Number} maxfirst The index offset within the workspace for the maxfirst array
|
||
|
* @param {Number} prevleaf The index offset within the workspace for the prevleaf array
|
||
|
* @param {Number} ancestor The index offset within the workspace for the ancestor array
|
||
|
*
|
||
|
* @return {Object}
|
||
|
*
|
||
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
||
|
*/
|
||
|
export function csLeaf(i, j, w, first, maxfirst, prevleaf, ancestor) {
|
||
|
var s, sparent; // our result
|
||
|
|
||
|
var jleaf = 0;
|
||
|
var q; // check j is a leaf
|
||
|
|
||
|
if (i <= j || w[first + j] <= w[maxfirst + i]) {
|
||
|
return -1;
|
||
|
} // update max first[j] seen so far
|
||
|
|
||
|
|
||
|
w[maxfirst + i] = w[first + j]; // jprev = previous leaf of ith subtree
|
||
|
|
||
|
var jprev = w[prevleaf + i];
|
||
|
w[prevleaf + i] = j; // check j is first or subsequent leaf
|
||
|
|
||
|
if (jprev === -1) {
|
||
|
// 1st leaf, q = root of ith subtree
|
||
|
jleaf = 1;
|
||
|
q = i;
|
||
|
} else {
|
||
|
// update jleaf
|
||
|
jleaf = 2; // q = least common ancester (jprev,j)
|
||
|
|
||
|
for (q = jprev; q !== w[ancestor + q]; q = w[ancestor + q]) {
|
||
|
;
|
||
|
}
|
||
|
|
||
|
for (s = jprev; s !== q; s = sparent) {
|
||
|
// path compression
|
||
|
sparent = w[ancestor + s];
|
||
|
w[ancestor + s] = q;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return {
|
||
|
jleaf: jleaf,
|
||
|
q: q
|
||
|
};
|
||
|
}
|