628 lines
24 KiB
JavaScript
628 lines
24 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createDerivative = void 0;
|
||
|
|
||
|
var _is = require("../../utils/is.js");
|
||
|
|
||
|
var _factory = require("../../utils/factory.js");
|
||
|
|
||
|
var name = 'derivative';
|
||
|
var dependencies = ['typed', 'config', 'parse', 'simplify', 'equal', 'isZero', 'numeric', 'ConstantNode', 'FunctionNode', 'OperatorNode', 'ParenthesisNode', 'SymbolNode'];
|
||
|
var createDerivative = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
||
|
var typed = _ref.typed,
|
||
|
config = _ref.config,
|
||
|
parse = _ref.parse,
|
||
|
simplify = _ref.simplify,
|
||
|
equal = _ref.equal,
|
||
|
isZero = _ref.isZero,
|
||
|
numeric = _ref.numeric,
|
||
|
ConstantNode = _ref.ConstantNode,
|
||
|
FunctionNode = _ref.FunctionNode,
|
||
|
OperatorNode = _ref.OperatorNode,
|
||
|
ParenthesisNode = _ref.ParenthesisNode,
|
||
|
SymbolNode = _ref.SymbolNode;
|
||
|
|
||
|
/**
|
||
|
* Takes the derivative of an expression expressed in parser Nodes.
|
||
|
* The derivative will be taken over the supplied variable in the
|
||
|
* second parameter. If there are multiple variables in the expression,
|
||
|
* it will return a partial derivative.
|
||
|
*
|
||
|
* This uses rules of differentiation which can be found here:
|
||
|
*
|
||
|
* - [Differentiation rules (Wikipedia)](https://en.wikipedia.org/wiki/Differentiation_rules)
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* derivative(expr, variable)
|
||
|
* derivative(expr, variable, options)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* math.derivative('x^2', 'x') // Node {2 * x}
|
||
|
* math.derivative('x^2', 'x', {simplify: false}) // Node {2 * 1 * x ^ (2 - 1)
|
||
|
* math.derivative('sin(2x)', 'x')) // Node {2 * cos(2 * x)}
|
||
|
* math.derivative('2*x', 'x').evaluate() // number 2
|
||
|
* math.derivative('x^2', 'x').evaluate({x: 4}) // number 8
|
||
|
* const f = math.parse('x^2')
|
||
|
* const x = math.parse('x')
|
||
|
* math.derivative(f, x) // Node {2 * x}
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* simplify, parse, evaluate
|
||
|
*
|
||
|
* @param {Node | string} expr The expression to differentiate
|
||
|
* @param {SymbolNode | string} variable The variable over which to differentiate
|
||
|
* @param {{simplify: boolean}} [options]
|
||
|
* There is one option available, `simplify`, which
|
||
|
* is true by default. When false, output will not
|
||
|
* be simplified.
|
||
|
* @return {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} The derivative of `expr`
|
||
|
*/
|
||
|
var derivative = typed('derivative', {
|
||
|
'Node, SymbolNode, Object': function NodeSymbolNodeObject(expr, variable, options) {
|
||
|
var constNodes = {};
|
||
|
constTag(constNodes, expr, variable.name);
|
||
|
|
||
|
var res = _derivative(expr, constNodes);
|
||
|
|
||
|
return options.simplify ? simplify(res) : res;
|
||
|
},
|
||
|
'Node, SymbolNode': function NodeSymbolNode(expr, variable) {
|
||
|
return this(expr, variable, {
|
||
|
simplify: true
|
||
|
});
|
||
|
},
|
||
|
'string, SymbolNode': function stringSymbolNode(expr, variable) {
|
||
|
return this(parse(expr), variable);
|
||
|
},
|
||
|
'string, SymbolNode, Object': function stringSymbolNodeObject(expr, variable, options) {
|
||
|
return this(parse(expr), variable, options);
|
||
|
},
|
||
|
'string, string': function stringString(expr, variable) {
|
||
|
return this(parse(expr), parse(variable));
|
||
|
},
|
||
|
'string, string, Object': function stringStringObject(expr, variable, options) {
|
||
|
return this(parse(expr), parse(variable), options);
|
||
|
},
|
||
|
'Node, string': function NodeString(expr, variable) {
|
||
|
return this(expr, parse(variable));
|
||
|
},
|
||
|
'Node, string, Object': function NodeStringObject(expr, variable, options) {
|
||
|
return this(expr, parse(variable), options);
|
||
|
} // TODO: replace the 8 signatures above with 4 as soon as typed-function supports optional arguments
|
||
|
|
||
|
/* TODO: implement and test syntax with order of derivatives -> implement as an option {order: number}
|
||
|
'Node, SymbolNode, ConstantNode': function (expr, variable, {order}) {
|
||
|
let res = expr
|
||
|
for (let i = 0; i < order; i++) {
|
||
|
let constNodes = {}
|
||
|
constTag(constNodes, expr, variable.name)
|
||
|
res = _derivative(res, constNodes)
|
||
|
}
|
||
|
return res
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
});
|
||
|
derivative._simplify = true;
|
||
|
|
||
|
derivative.toTex = function (deriv) {
|
||
|
return _derivTex.apply(null, deriv.args);
|
||
|
}; // FIXME: move the toTex method of derivative to latex.js. Difficulty is that it relies on parse.
|
||
|
// NOTE: the optional "order" parameter here is currently unused
|
||
|
|
||
|
|
||
|
var _derivTex = typed('_derivTex', {
|
||
|
'Node, SymbolNode': function NodeSymbolNode(expr, x) {
|
||
|
if ((0, _is.isConstantNode)(expr) && (0, _is.typeOf)(expr.value) === 'string') {
|
||
|
return _derivTex(parse(expr.value).toString(), x.toString(), 1);
|
||
|
} else {
|
||
|
return _derivTex(expr.toString(), x.toString(), 1);
|
||
|
}
|
||
|
},
|
||
|
'Node, ConstantNode': function NodeConstantNode(expr, x) {
|
||
|
if ((0, _is.typeOf)(x.value) === 'string') {
|
||
|
return _derivTex(expr, parse(x.value));
|
||
|
} else {
|
||
|
throw new Error("The second parameter to 'derivative' is a non-string constant");
|
||
|
}
|
||
|
},
|
||
|
'Node, SymbolNode, ConstantNode': function NodeSymbolNodeConstantNode(expr, x, order) {
|
||
|
return _derivTex(expr.toString(), x.name, order.value);
|
||
|
},
|
||
|
'string, string, number': function stringStringNumber(expr, x, order) {
|
||
|
var d;
|
||
|
|
||
|
if (order === 1) {
|
||
|
d = '{d\\over d' + x + '}';
|
||
|
} else {
|
||
|
d = '{d^{' + order + '}\\over d' + x + '^{' + order + '}}';
|
||
|
}
|
||
|
|
||
|
return d + "\\left[".concat(expr, "\\right]");
|
||
|
}
|
||
|
});
|
||
|
/**
|
||
|
* Does a depth-first search on the expression tree to identify what Nodes
|
||
|
* are constants (e.g. 2 + 2), and stores the ones that are constants in
|
||
|
* constNodes. Classification is done as follows:
|
||
|
*
|
||
|
* 1. ConstantNodes are constants.
|
||
|
* 2. If there exists a SymbolNode, of which we are differentiating over,
|
||
|
* in the subtree it is not constant.
|
||
|
*
|
||
|
* @param {Object} constNodes Holds the nodes that are constant
|
||
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
||
|
* @param {string} varName Variable that we are differentiating
|
||
|
* @return {boolean} if node is constant
|
||
|
*/
|
||
|
// TODO: can we rewrite constTag into a pure function?
|
||
|
|
||
|
|
||
|
var constTag = typed('constTag', {
|
||
|
'Object, ConstantNode, string': function ObjectConstantNodeString(constNodes, node) {
|
||
|
constNodes[node] = true;
|
||
|
return true;
|
||
|
},
|
||
|
'Object, SymbolNode, string': function ObjectSymbolNodeString(constNodes, node, varName) {
|
||
|
// Treat other variables like constants. For reasoning, see:
|
||
|
// https://en.wikipedia.org/wiki/Partial_derivative
|
||
|
if (node.name !== varName) {
|
||
|
constNodes[node] = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
},
|
||
|
'Object, ParenthesisNode, string': function ObjectParenthesisNodeString(constNodes, node, varName) {
|
||
|
return constTag(constNodes, node.content, varName);
|
||
|
},
|
||
|
'Object, FunctionAssignmentNode, string': function ObjectFunctionAssignmentNodeString(constNodes, node, varName) {
|
||
|
if (node.params.indexOf(varName) === -1) {
|
||
|
constNodes[node] = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return constTag(constNodes, node.expr, varName);
|
||
|
},
|
||
|
'Object, FunctionNode | OperatorNode, string': function ObjectFunctionNodeOperatorNodeString(constNodes, node, varName) {
|
||
|
if (node.args.length > 0) {
|
||
|
var isConst = constTag(constNodes, node.args[0], varName);
|
||
|
|
||
|
for (var i = 1; i < node.args.length; ++i) {
|
||
|
isConst = constTag(constNodes, node.args[i], varName) && isConst;
|
||
|
}
|
||
|
|
||
|
if (isConst) {
|
||
|
constNodes[node] = true;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
});
|
||
|
/**
|
||
|
* Applies differentiation rules.
|
||
|
*
|
||
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
||
|
* @param {Object} constNodes Holds the nodes that are constant
|
||
|
* @return {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} The derivative of `expr`
|
||
|
*/
|
||
|
|
||
|
var _derivative = typed('_derivative', {
|
||
|
'ConstantNode, Object': function ConstantNodeObject(node) {
|
||
|
return createConstantNode(0);
|
||
|
},
|
||
|
'SymbolNode, Object': function SymbolNodeObject(node, constNodes) {
|
||
|
if (constNodes[node] !== undefined) {
|
||
|
return createConstantNode(0);
|
||
|
}
|
||
|
|
||
|
return createConstantNode(1);
|
||
|
},
|
||
|
'ParenthesisNode, Object': function ParenthesisNodeObject(node, constNodes) {
|
||
|
return new ParenthesisNode(_derivative(node.content, constNodes));
|
||
|
},
|
||
|
'FunctionAssignmentNode, Object': function FunctionAssignmentNodeObject(node, constNodes) {
|
||
|
if (constNodes[node] !== undefined) {
|
||
|
return createConstantNode(0);
|
||
|
}
|
||
|
|
||
|
return _derivative(node.expr, constNodes);
|
||
|
},
|
||
|
'FunctionNode, Object': function FunctionNodeObject(node, constNodes) {
|
||
|
if (node.args.length !== 1) {
|
||
|
funcArgsCheck(node);
|
||
|
}
|
||
|
|
||
|
if (constNodes[node] !== undefined) {
|
||
|
return createConstantNode(0);
|
||
|
}
|
||
|
|
||
|
var arg0 = node.args[0];
|
||
|
var arg1;
|
||
|
var div = false; // is output a fraction?
|
||
|
|
||
|
var negative = false; // is output negative?
|
||
|
|
||
|
var funcDerivative;
|
||
|
|
||
|
switch (node.name) {
|
||
|
case 'cbrt':
|
||
|
// d/dx(cbrt(x)) = 1 / (3x^(2/3))
|
||
|
div = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [createConstantNode(3), new OperatorNode('^', 'pow', [arg0, new OperatorNode('/', 'divide', [createConstantNode(2), createConstantNode(3)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'sqrt':
|
||
|
case 'nthRoot':
|
||
|
// d/dx(sqrt(x)) = 1 / (2*sqrt(x))
|
||
|
if (node.args.length === 1) {
|
||
|
div = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [createConstantNode(2), new FunctionNode('sqrt', [arg0])]);
|
||
|
} else if (node.args.length === 2) {
|
||
|
// Rearrange from nthRoot(x, a) -> x^(1/a)
|
||
|
arg1 = new OperatorNode('/', 'divide', [createConstantNode(1), node.args[1]]); // Is a variable?
|
||
|
|
||
|
constNodes[arg1] = constNodes[node.args[1]];
|
||
|
return _derivative(new OperatorNode('^', 'pow', [arg0, arg1]), constNodes);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 'log10':
|
||
|
arg1 = createConstantNode(10);
|
||
|
|
||
|
/* fall through! */
|
||
|
|
||
|
case 'log':
|
||
|
if (!arg1 && node.args.length === 1) {
|
||
|
// d/dx(log(x)) = 1 / x
|
||
|
funcDerivative = arg0.clone();
|
||
|
div = true;
|
||
|
} else if (node.args.length === 1 && arg1 || node.args.length === 2 && constNodes[node.args[1]] !== undefined) {
|
||
|
// d/dx(log(x, c)) = 1 / (x*ln(c))
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [arg0.clone(), new FunctionNode('log', [arg1 || node.args[1]])]);
|
||
|
div = true;
|
||
|
} else if (node.args.length === 2) {
|
||
|
// d/dx(log(f(x), g(x))) = d/dx(log(f(x)) / log(g(x)))
|
||
|
return _derivative(new OperatorNode('/', 'divide', [new FunctionNode('log', [arg0]), new FunctionNode('log', [node.args[1]])]), constNodes);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 'pow':
|
||
|
constNodes[arg1] = constNodes[node.args[1]]; // Pass to pow operator node parser
|
||
|
|
||
|
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]), constNodes);
|
||
|
|
||
|
case 'exp':
|
||
|
// d/dx(e^x) = e^x
|
||
|
funcDerivative = new FunctionNode('exp', [arg0.clone()]);
|
||
|
break;
|
||
|
|
||
|
case 'sin':
|
||
|
// d/dx(sin(x)) = cos(x)
|
||
|
funcDerivative = new FunctionNode('cos', [arg0.clone()]);
|
||
|
break;
|
||
|
|
||
|
case 'cos':
|
||
|
// d/dx(cos(x)) = -sin(x)
|
||
|
funcDerivative = new OperatorNode('-', 'unaryMinus', [new FunctionNode('sin', [arg0.clone()])]);
|
||
|
break;
|
||
|
|
||
|
case 'tan':
|
||
|
// d/dx(tan(x)) = sec(x)^2
|
||
|
funcDerivative = new OperatorNode('^', 'pow', [new FunctionNode('sec', [arg0.clone()]), createConstantNode(2)]);
|
||
|
break;
|
||
|
|
||
|
case 'sec':
|
||
|
// d/dx(sec(x)) = sec(x)tan(x)
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [node, new FunctionNode('tan', [arg0.clone()])]);
|
||
|
break;
|
||
|
|
||
|
case 'csc':
|
||
|
// d/dx(csc(x)) = -csc(x)cot(x)
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [node, new FunctionNode('cot', [arg0.clone()])]);
|
||
|
break;
|
||
|
|
||
|
case 'cot':
|
||
|
// d/dx(cot(x)) = -csc(x)^2
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('^', 'pow', [new FunctionNode('csc', [arg0.clone()]), createConstantNode(2)]);
|
||
|
break;
|
||
|
|
||
|
case 'asin':
|
||
|
// d/dx(asin(x)) = 1 / sqrt(1 - x^2)
|
||
|
div = true;
|
||
|
funcDerivative = new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [createConstantNode(1), new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'acos':
|
||
|
// d/dx(acos(x)) = -1 / sqrt(1 - x^2)
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [createConstantNode(1), new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'atan':
|
||
|
// d/dx(atan(x)) = 1 / (x^2 + 1)
|
||
|
div = true;
|
||
|
funcDerivative = new OperatorNode('+', 'add', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)]);
|
||
|
break;
|
||
|
|
||
|
case 'asec':
|
||
|
// d/dx(asec(x)) = 1 / (|x|*sqrt(x^2 - 1))
|
||
|
div = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [new FunctionNode('abs', [arg0.clone()]), new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'acsc':
|
||
|
// d/dx(acsc(x)) = -1 / (|x|*sqrt(x^2 - 1))
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [new FunctionNode('abs', [arg0.clone()]), new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'acot':
|
||
|
// d/dx(acot(x)) = -1 / (x^2 + 1)
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('+', 'add', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)]);
|
||
|
break;
|
||
|
|
||
|
case 'sinh':
|
||
|
// d/dx(sinh(x)) = cosh(x)
|
||
|
funcDerivative = new FunctionNode('cosh', [arg0.clone()]);
|
||
|
break;
|
||
|
|
||
|
case 'cosh':
|
||
|
// d/dx(cosh(x)) = sinh(x)
|
||
|
funcDerivative = new FunctionNode('sinh', [arg0.clone()]);
|
||
|
break;
|
||
|
|
||
|
case 'tanh':
|
||
|
// d/dx(tanh(x)) = sech(x)^2
|
||
|
funcDerivative = new OperatorNode('^', 'pow', [new FunctionNode('sech', [arg0.clone()]), createConstantNode(2)]);
|
||
|
break;
|
||
|
|
||
|
case 'sech':
|
||
|
// d/dx(sech(x)) = -sech(x)tanh(x)
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [node, new FunctionNode('tanh', [arg0.clone()])]);
|
||
|
break;
|
||
|
|
||
|
case 'csch':
|
||
|
// d/dx(csch(x)) = -csch(x)coth(x)
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [node, new FunctionNode('coth', [arg0.clone()])]);
|
||
|
break;
|
||
|
|
||
|
case 'coth':
|
||
|
// d/dx(coth(x)) = -csch(x)^2
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('^', 'pow', [new FunctionNode('csch', [arg0.clone()]), createConstantNode(2)]);
|
||
|
break;
|
||
|
|
||
|
case 'asinh':
|
||
|
// d/dx(asinh(x)) = 1 / sqrt(x^2 + 1)
|
||
|
div = true;
|
||
|
funcDerivative = new FunctionNode('sqrt', [new OperatorNode('+', 'add', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)])]);
|
||
|
break;
|
||
|
|
||
|
case 'acosh':
|
||
|
// d/dx(acosh(x)) = 1 / sqrt(x^2 - 1); XXX potentially only for x >= 1 (the real spectrum)
|
||
|
div = true;
|
||
|
funcDerivative = new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)])]);
|
||
|
break;
|
||
|
|
||
|
case 'atanh':
|
||
|
// d/dx(atanh(x)) = 1 / (1 - x^2)
|
||
|
div = true;
|
||
|
funcDerivative = new OperatorNode('-', 'subtract', [createConstantNode(1), new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)])]);
|
||
|
break;
|
||
|
|
||
|
case 'asech':
|
||
|
// d/dx(asech(x)) = -1 / (x*sqrt(1 - x^2))
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [arg0.clone(), new FunctionNode('sqrt', [new OperatorNode('-', 'subtract', [createConstantNode(1), new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)])])])]);
|
||
|
break;
|
||
|
|
||
|
case 'acsch':
|
||
|
// d/dx(acsch(x)) = -1 / (|x|*sqrt(x^2 + 1))
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('*', 'multiply', [new FunctionNode('abs', [arg0.clone()]), new FunctionNode('sqrt', [new OperatorNode('+', 'add', [new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)]), createConstantNode(1)])])]);
|
||
|
break;
|
||
|
|
||
|
case 'acoth':
|
||
|
// d/dx(acoth(x)) = -1 / (1 - x^2)
|
||
|
div = true;
|
||
|
negative = true;
|
||
|
funcDerivative = new OperatorNode('-', 'subtract', [createConstantNode(1), new OperatorNode('^', 'pow', [arg0.clone(), createConstantNode(2)])]);
|
||
|
break;
|
||
|
|
||
|
case 'abs':
|
||
|
// d/dx(abs(x)) = abs(x)/x
|
||
|
funcDerivative = new OperatorNode('/', 'divide', [new FunctionNode(new SymbolNode('abs'), [arg0.clone()]), arg0.clone()]);
|
||
|
break;
|
||
|
|
||
|
case 'gamma': // Needs digamma function, d/dx(gamma(x)) = gamma(x)digamma(x)
|
||
|
|
||
|
default:
|
||
|
throw new Error('Function "' + node.name + '" is not supported by derivative, or a wrong number of arguments is passed');
|
||
|
}
|
||
|
|
||
|
var op, func;
|
||
|
|
||
|
if (div) {
|
||
|
op = '/';
|
||
|
func = 'divide';
|
||
|
} else {
|
||
|
op = '*';
|
||
|
func = 'multiply';
|
||
|
}
|
||
|
/* Apply chain rule to all functions:
|
||
|
F(x) = f(g(x))
|
||
|
F'(x) = g'(x)*f'(g(x)) */
|
||
|
|
||
|
|
||
|
var chainDerivative = _derivative(arg0, constNodes);
|
||
|
|
||
|
if (negative) {
|
||
|
chainDerivative = new OperatorNode('-', 'unaryMinus', [chainDerivative]);
|
||
|
}
|
||
|
|
||
|
return new OperatorNode(op, func, [chainDerivative, funcDerivative]);
|
||
|
},
|
||
|
'OperatorNode, Object': function OperatorNodeObject(node, constNodes) {
|
||
|
if (constNodes[node] !== undefined) {
|
||
|
return createConstantNode(0);
|
||
|
}
|
||
|
|
||
|
if (node.op === '+') {
|
||
|
// d/dx(sum(f(x)) = sum(f'(x))
|
||
|
return new OperatorNode(node.op, node.fn, node.args.map(function (arg) {
|
||
|
return _derivative(arg, constNodes);
|
||
|
}));
|
||
|
}
|
||
|
|
||
|
if (node.op === '-') {
|
||
|
// d/dx(+/-f(x)) = +/-f'(x)
|
||
|
if (node.isUnary()) {
|
||
|
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], constNodes)]);
|
||
|
} // Linearity of differentiation, d/dx(f(x) +/- g(x)) = f'(x) +/- g'(x)
|
||
|
|
||
|
|
||
|
if (node.isBinary()) {
|
||
|
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], constNodes), _derivative(node.args[1], constNodes)]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (node.op === '*') {
|
||
|
// d/dx(c*f(x)) = c*f'(x)
|
||
|
var constantTerms = node.args.filter(function (arg) {
|
||
|
return constNodes[arg] !== undefined;
|
||
|
});
|
||
|
|
||
|
if (constantTerms.length > 0) {
|
||
|
var nonConstantTerms = node.args.filter(function (arg) {
|
||
|
return constNodes[arg] === undefined;
|
||
|
});
|
||
|
var nonConstantNode = nonConstantTerms.length === 1 ? nonConstantTerms[0] : new OperatorNode('*', 'multiply', nonConstantTerms);
|
||
|
var newArgs = constantTerms.concat(_derivative(nonConstantNode, constNodes));
|
||
|
return new OperatorNode('*', 'multiply', newArgs);
|
||
|
} // Product Rule, d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)
|
||
|
|
||
|
|
||
|
return new OperatorNode('+', 'add', node.args.map(function (argOuter) {
|
||
|
return new OperatorNode('*', 'multiply', node.args.map(function (argInner) {
|
||
|
return argInner === argOuter ? _derivative(argInner, constNodes) : argInner.clone();
|
||
|
}));
|
||
|
}));
|
||
|
}
|
||
|
|
||
|
if (node.op === '/' && node.isBinary()) {
|
||
|
var arg0 = node.args[0];
|
||
|
var arg1 = node.args[1]; // d/dx(f(x) / c) = f'(x) / c
|
||
|
|
||
|
if (constNodes[arg1] !== undefined) {
|
||
|
return new OperatorNode('/', 'divide', [_derivative(arg0, constNodes), arg1]);
|
||
|
} // Reciprocal Rule, d/dx(c / f(x)) = -c(f'(x)/f(x)^2)
|
||
|
|
||
|
|
||
|
if (constNodes[arg0] !== undefined) {
|
||
|
return new OperatorNode('*', 'multiply', [new OperatorNode('-', 'unaryMinus', [arg0]), new OperatorNode('/', 'divide', [_derivative(arg1, constNodes), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])])]);
|
||
|
} // Quotient rule, d/dx(f(x) / g(x)) = (f'(x)g(x) - f(x)g'(x)) / g(x)^2
|
||
|
|
||
|
|
||
|
return new OperatorNode('/', 'divide', [new OperatorNode('-', 'subtract', [new OperatorNode('*', 'multiply', [_derivative(arg0, constNodes), arg1.clone()]), new OperatorNode('*', 'multiply', [arg0.clone(), _derivative(arg1, constNodes)])]), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])]);
|
||
|
}
|
||
|
|
||
|
if (node.op === '^' && node.isBinary()) {
|
||
|
var _arg = node.args[0];
|
||
|
var _arg2 = node.args[1];
|
||
|
|
||
|
if (constNodes[_arg] !== undefined) {
|
||
|
// If is secretly constant; 0^f(x) = 1 (in JS), 1^f(x) = 1
|
||
|
if ((0, _is.isConstantNode)(_arg) && (isZero(_arg.value) || equal(_arg.value, 1))) {
|
||
|
return createConstantNode(0);
|
||
|
} // d/dx(c^f(x)) = c^f(x)*ln(c)*f'(x)
|
||
|
|
||
|
|
||
|
return new OperatorNode('*', 'multiply', [node, new OperatorNode('*', 'multiply', [new FunctionNode('log', [_arg.clone()]), _derivative(_arg2.clone(), constNodes)])]);
|
||
|
}
|
||
|
|
||
|
if (constNodes[_arg2] !== undefined) {
|
||
|
if ((0, _is.isConstantNode)(_arg2)) {
|
||
|
// If is secretly constant; f(x)^0 = 1 -> d/dx(1) = 0
|
||
|
if (isZero(_arg2.value)) {
|
||
|
return createConstantNode(0);
|
||
|
} // Ignore exponent; f(x)^1 = f(x)
|
||
|
|
||
|
|
||
|
if (equal(_arg2.value, 1)) {
|
||
|
return _derivative(_arg, constNodes);
|
||
|
}
|
||
|
} // Elementary Power Rule, d/dx(f(x)^c) = c*f'(x)*f(x)^(c-1)
|
||
|
|
||
|
|
||
|
var powMinusOne = new OperatorNode('^', 'pow', [_arg.clone(), new OperatorNode('-', 'subtract', [_arg2, createConstantNode(1)])]);
|
||
|
return new OperatorNode('*', 'multiply', [_arg2.clone(), new OperatorNode('*', 'multiply', [_derivative(_arg, constNodes), powMinusOne])]);
|
||
|
} // Functional Power Rule, d/dx(f^g) = f^g*[f'*(g/f) + g'ln(f)]
|
||
|
|
||
|
|
||
|
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [_arg.clone(), _arg2.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(_arg, constNodes), new OperatorNode('/', 'divide', [_arg2.clone(), _arg.clone()])]), new OperatorNode('*', 'multiply', [_derivative(_arg2, constNodes), new FunctionNode('log', [_arg.clone()])])])]);
|
||
|
}
|
||
|
|
||
|
throw new Error('Operator "' + node.op + '" is not supported by derivative, or a wrong number of arguments is passed');
|
||
|
}
|
||
|
});
|
||
|
/**
|
||
|
* Ensures the number of arguments for a function are correct,
|
||
|
* and will throw an error otherwise.
|
||
|
*
|
||
|
* @param {FunctionNode} node
|
||
|
*/
|
||
|
|
||
|
|
||
|
function funcArgsCheck(node) {
|
||
|
// TODO add min, max etc
|
||
|
if ((node.name === 'log' || node.name === 'nthRoot' || node.name === 'pow') && node.args.length === 2) {
|
||
|
return;
|
||
|
} // There should be an incorrect number of arguments if we reach here
|
||
|
// Change all args to constants to avoid unidentified
|
||
|
// symbol error when compiling function
|
||
|
|
||
|
|
||
|
for (var i = 0; i < node.args.length; ++i) {
|
||
|
node.args[i] = createConstantNode(0);
|
||
|
}
|
||
|
|
||
|
node.compile().evaluate();
|
||
|
throw new Error('Expected TypeError, but none found');
|
||
|
}
|
||
|
/**
|
||
|
* Helper function to create a constant node with a specific type
|
||
|
* (number, BigNumber, Fraction)
|
||
|
* @param {number} value
|
||
|
* @param {string} [valueType]
|
||
|
* @return {ConstantNode}
|
||
|
*/
|
||
|
|
||
|
|
||
|
function createConstantNode(value, valueType) {
|
||
|
return new ConstantNode(numeric(value, valueType || config.number));
|
||
|
}
|
||
|
|
||
|
return derivative;
|
||
|
});
|
||
|
exports.createDerivative = createDerivative;
|