simple-squiggle/node_modules/mathjs/lib/esm/function/matrix/expm.js

166 lines
4.4 KiB
JavaScript
Raw Normal View History

import { isSparseMatrix } from '../../utils/is.js';
import { format } from '../../utils/string.js';
import { factory } from '../../utils/factory.js';
var name = 'expm';
var dependencies = ['typed', 'abs', 'add', 'identity', 'inv', 'multiply'];
export var createExpm = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
abs,
add,
identity,
inv,
multiply
} = _ref;
/**
* Compute the matrix exponential, expm(A) = e^A. The matrix must be square.
* Not to be confused with exp(a), which performs element-wise
* exponentiation.
*
* The exponential is calculated using the Padé approximant with scaling and
* squaring; see "Nineteen Dubious Ways to Compute the Exponential of a
* Matrix," by Moler and Van Loan.
*
* Syntax:
*
* math.expm(x)
*
* Examples:
*
* const A = [[0,2],[0,0]]
* math.expm(A) // returns [[1,2],[0,1]]
*
* See also:
*
* exp
*
* @param {Matrix} x A square Matrix
* @return {Matrix} The exponential of x
*/
return typed(name, {
Matrix: function Matrix(A) {
// Check matrix size
var size = A.size();
if (size.length !== 2 || size[0] !== size[1]) {
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
}
var n = size[0]; // Desired accuracy of the approximant (The actual accuracy
// will be affected by round-off error)
var eps = 1e-15; // The Padé approximant is not so accurate when the values of A
// are "large", so scale A by powers of two. Then compute the
// exponential, and square the result repeatedly according to
// the identity e^A = (e^(A/m))^m
// Compute infinity-norm of A, ||A||, to see how "big" it is
var infNorm = infinityNorm(A); // Find the optimal scaling factor and number of terms in the
// Padé approximant to reach the desired accuracy
var params = findParams(infNorm, eps);
var q = params.q;
var j = params.j; // The Pade approximation to e^A is:
// Rqq(A) = Dqq(A) ^ -1 * Nqq(A)
// where
// Nqq(A) = sum(i=0, q, (2q-i)!p! / [ (2q)!i!(q-i)! ] A^i
// Dqq(A) = sum(i=0, q, (2q-i)!q! / [ (2q)!i!(q-i)! ] (-A)^i
// Scale A by 1 / 2^j
var Apos = multiply(A, Math.pow(2, -j)); // The i=0 term is just the identity matrix
var N = identity(n);
var D = identity(n); // Initialization (i=0)
var factor = 1; // Initialization (i=1)
var AposToI = Apos; // Cloning not necessary
var alternate = -1;
for (var i = 1; i <= q; i++) {
if (i > 1) {
AposToI = multiply(AposToI, Apos);
alternate = -alternate;
}
factor = factor * (q - i + 1) / ((2 * q - i + 1) * i);
N = add(N, multiply(factor, AposToI));
D = add(D, multiply(factor * alternate, AposToI));
}
var R = multiply(inv(D), N); // Square j times
for (var _i = 0; _i < j; _i++) {
R = multiply(R, R);
}
return isSparseMatrix(A) ? A.createSparseMatrix(R) : R;
}
});
function infinityNorm(A) {
var n = A.size()[0];
var infNorm = 0;
for (var i = 0; i < n; i++) {
var rowSum = 0;
for (var j = 0; j < n; j++) {
rowSum += abs(A.get([i, j]));
}
infNorm = Math.max(rowSum, infNorm);
}
return infNorm;
}
/**
* Find the best parameters for the Pade approximant given
* the matrix norm and desired accuracy. Returns the first acceptable
* combination in order of increasing computational load.
*/
function findParams(infNorm, eps) {
var maxSearchSize = 30;
for (var k = 0; k < maxSearchSize; k++) {
for (var q = 0; q <= k; q++) {
var j = k - q;
if (errorEstimate(infNorm, q, j) < eps) {
return {
q: q,
j: j
};
}
}
}
throw new Error('Could not find acceptable parameters to compute the matrix exponential (try increasing maxSearchSize in expm.js)');
}
/**
* Returns the estimated error of the Pade approximant for the given
* parameters.
*/
function errorEstimate(infNorm, q, j) {
var qfac = 1;
for (var i = 2; i <= q; i++) {
qfac *= i;
}
var twoqfac = qfac;
for (var _i2 = q + 1; _i2 <= 2 * q; _i2++) {
twoqfac *= _i2;
}
var twoqp1fac = twoqfac * (2 * q + 1);
return 8.0 * Math.pow(infNorm / Math.pow(2, j), 2 * q) * qfac * qfac / (twoqfac * twoqp1fac);
}
});