simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/sparse/csSqr.js

195 lines
4.7 KiB
JavaScript
Raw Normal View History

import { csPermute } from './csPermute.js';
import { csPost } from './csPost.js';
import { csEtree } from './csEtree.js';
import { createCsAmd } from './csAmd.js';
import { createCsCounts } from './csCounts.js';
import { factory } from '../../../utils/factory.js';
var name = 'csSqr';
var dependencies = ['add', 'multiply', 'transpose'];
export var createCsSqr = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
add,
multiply,
transpose
} = _ref;
var csAmd = createCsAmd({
add,
multiply,
transpose
});
var csCounts = createCsCounts({
transpose
});
/**
* Symbolic ordering and analysis for QR and LU decompositions.
*
* @param {Number} order The ordering strategy (see csAmd for more details)
* @param {Matrix} a The A matrix
* @param {boolean} qr Symbolic ordering and analysis for QR decomposition (true) or
* symbolic ordering and analysis for LU decomposition (false)
*
* @return {Object} The Symbolic ordering and analysis for matrix A
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
return function csSqr(order, a, qr) {
// a arrays
var aptr = a._ptr;
var asize = a._size; // columns
var n = asize[1]; // vars
var k; // symbolic analysis result
var s = {}; // fill-reducing ordering
s.q = csAmd(order, a); // validate results
if (order && !s.q) {
return null;
} // QR symbolic analysis
if (qr) {
// apply permutations if needed
var c = order ? csPermute(a, null, s.q, 0) : a; // etree of C'*C, where C=A(:,q)
s.parent = csEtree(c, 1); // post order elimination tree
var post = csPost(s.parent, n); // col counts chol(C'*C)
s.cp = csCounts(c, s.parent, post, 1); // check we have everything needed to calculate number of nonzero elements
if (c && s.parent && s.cp && _vcount(c, s)) {
// calculate number of nonzero elements
for (s.unz = 0, k = 0; k < n; k++) {
s.unz += s.cp[k];
}
}
} else {
// for LU factorization only, guess nnz(L) and nnz(U)
s.unz = 4 * aptr[n] + n;
s.lnz = s.unz;
} // return result S
return s;
};
/**
* Compute nnz(V) = s.lnz, s.pinv, s.leftmost, s.m2 from A and s.parent
*/
function _vcount(a, s) {
// a arrays
var aptr = a._ptr;
var aindex = a._index;
var asize = a._size; // rows & columns
var m = asize[0];
var n = asize[1]; // initialize s arrays
s.pinv = []; // (m + n)
s.leftmost = []; // (m)
// vars
var parent = s.parent;
var pinv = s.pinv;
var leftmost = s.leftmost; // workspace, next: first m entries, head: next n entries, tail: next n entries, nque: next n entries
var w = []; // (m + 3 * n)
var next = 0;
var head = m;
var tail = m + n;
var nque = m + 2 * n; // vars
var i, k, p, p0, p1; // initialize w
for (k = 0; k < n; k++) {
// queue k is empty
w[head + k] = -1;
w[tail + k] = -1;
w[nque + k] = 0;
} // initialize row arrays
for (i = 0; i < m; i++) {
leftmost[i] = -1;
} // loop columns backwards
for (k = n - 1; k >= 0; k--) {
// values & index for column k
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// leftmost[i] = min(find(A(i,:)))
leftmost[aindex[p]] = k;
}
} // scan rows in reverse order
for (i = m - 1; i >= 0; i--) {
// row i is not yet ordered
pinv[i] = -1;
k = leftmost[i]; // check row i is empty
if (k === -1) {
continue;
} // first row in queue k
if (w[nque + k]++ === 0) {
w[tail + k] = i;
} // put i at head of queue k
w[next + i] = w[head + k];
w[head + k] = i;
}
s.lnz = 0;
s.m2 = m; // find row permutation and nnz(V)
for (k = 0; k < n; k++) {
// remove row i from queue k
i = w[head + k]; // count V(k,k) as nonzero
s.lnz++; // add a fictitious row
if (i < 0) {
i = s.m2++;
} // associate row i with V(:,k)
pinv[i] = k; // skip if V(k+1:m,k) is empty
if (--nque[k] <= 0) {
continue;
} // nque[k] is nnz (V(k+1:m,k))
s.lnz += w[nque + k]; // move all rows to parent of k
var pa = parent[k];
if (pa !== -1) {
if (w[nque + pa] === 0) {
w[tail + pa] = w[tail + k];
}
w[next + w[tail + k]] = w[head + pa];
w[head + pa] = w[next + i];
w[nque + pa] += w[nque + k];
}
}
for (i = 0; i < m; i++) {
if (pinv[i] < 0) {
pinv[i] = k++;
}
}
return true;
}
});