simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/sparse/csReach.js

52 lines
1.6 KiB
JavaScript
Raw Normal View History

import { csMarked } from './csMarked.js';
import { csMark } from './csMark.js';
import { csDfs } from './csDfs.js';
/**
* The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
* sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
* nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
*
* @param {Matrix} g The G matrix
* @param {Matrix} b The B matrix
* @param {Number} k The kth column in B
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
* @param {Array} pinv The inverse row permutation vector
*
* @return {Number} The index for the nonzero pattern
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
export function csReach(g, b, k, xi, pinv) {
// g arrays
var gptr = g._ptr;
var gsize = g._size; // b arrays
var bindex = b._index;
var bptr = b._ptr; // columns
var n = gsize[1]; // vars
var p, p0, p1; // initialize top
var top = n; // loop column indeces in B
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
// node i
var i = bindex[p]; // check node i is marked
if (!csMarked(gptr, i)) {
// start a dfs at unmarked node i
top = csDfs(i, g, top, xi, pinv);
}
} // loop columns from top -> n - 1
for (p = top; p < n; p++) {
// restore G
csMark(gptr, xi[p]);
}
return top;
}