140 lines
3.3 KiB
JavaScript
140 lines
3.3 KiB
JavaScript
|
import { factory } from '../../../utils/factory.js';
|
||
|
import { csLeaf } from './csLeaf.js';
|
||
|
var name = 'csCounts';
|
||
|
var dependencies = ['transpose'];
|
||
|
export var createCsCounts = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
|
var {
|
||
|
transpose
|
||
|
} = _ref;
|
||
|
|
||
|
/**
|
||
|
* Computes the column counts using the upper triangular part of A.
|
||
|
* It transposes A internally, none of the input parameters are modified.
|
||
|
*
|
||
|
* @param {Matrix} a The sparse matrix A
|
||
|
*
|
||
|
* @param {Matrix} ata Count the columns of A'A instead
|
||
|
*
|
||
|
* @return An array of size n of the column counts or null on error
|
||
|
*
|
||
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
||
|
*/
|
||
|
return function (a, parent, post, ata) {
|
||
|
// check inputs
|
||
|
if (!a || !parent || !post) {
|
||
|
return null;
|
||
|
} // a matrix arrays
|
||
|
|
||
|
|
||
|
var asize = a._size; // rows and columns
|
||
|
|
||
|
var m = asize[0];
|
||
|
var n = asize[1]; // variables
|
||
|
|
||
|
var i, j, k, J, p, p0, p1; // workspace size
|
||
|
|
||
|
var s = 4 * n + (ata ? n + m + 1 : 0); // allocate workspace
|
||
|
|
||
|
var w = []; // (s)
|
||
|
|
||
|
var ancestor = 0; // first n entries
|
||
|
|
||
|
var maxfirst = n; // next n entries
|
||
|
|
||
|
var prevleaf = 2 * n; // next n entries
|
||
|
|
||
|
var first = 3 * n; // next n entries
|
||
|
|
||
|
var head = 4 * n; // next n + 1 entries (used when ata is true)
|
||
|
|
||
|
var next = 5 * n + 1; // last entries in workspace
|
||
|
// clear workspace w[0..s-1]
|
||
|
|
||
|
for (k = 0; k < s; k++) {
|
||
|
w[k] = -1;
|
||
|
} // allocate result
|
||
|
|
||
|
|
||
|
var colcount = []; // (n)
|
||
|
// AT = A'
|
||
|
|
||
|
var at = transpose(a); // at arrays
|
||
|
|
||
|
var tindex = at._index;
|
||
|
var tptr = at._ptr; // find w[first + j]
|
||
|
|
||
|
for (k = 0; k < n; k++) {
|
||
|
j = post[k]; // colcount[j]=1 if j is a leaf
|
||
|
|
||
|
colcount[j] = w[first + j] === -1 ? 1 : 0;
|
||
|
|
||
|
for (; j !== -1 && w[first + j] === -1; j = parent[j]) {
|
||
|
w[first + j] = k;
|
||
|
}
|
||
|
} // initialize ata if needed
|
||
|
|
||
|
|
||
|
if (ata) {
|
||
|
// invert post
|
||
|
for (k = 0; k < n; k++) {
|
||
|
w[post[k]] = k;
|
||
|
} // loop rows (columns in AT)
|
||
|
|
||
|
|
||
|
for (i = 0; i < m; i++) {
|
||
|
// values in column i of AT
|
||
|
for (k = n, p0 = tptr[i], p1 = tptr[i + 1], p = p0; p < p1; p++) {
|
||
|
k = Math.min(k, w[tindex[p]]);
|
||
|
} // place row i in linked list k
|
||
|
|
||
|
|
||
|
w[next + i] = w[head + k];
|
||
|
w[head + k] = i;
|
||
|
}
|
||
|
} // each node in its own set
|
||
|
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
w[ancestor + i] = i;
|
||
|
}
|
||
|
|
||
|
for (k = 0; k < n; k++) {
|
||
|
// j is the kth node in postordered etree
|
||
|
j = post[k]; // check j is not a root
|
||
|
|
||
|
if (parent[j] !== -1) {
|
||
|
colcount[parent[j]]--;
|
||
|
} // J=j for LL'=A case
|
||
|
|
||
|
|
||
|
for (J = ata ? w[head + k] : j; J !== -1; J = ata ? w[next + J] : -1) {
|
||
|
for (p = tptr[J]; p < tptr[J + 1]; p++) {
|
||
|
i = tindex[p];
|
||
|
var r = csLeaf(i, j, w, first, maxfirst, prevleaf, ancestor); // check A(i,j) is in skeleton
|
||
|
|
||
|
if (r.jleaf >= 1) {
|
||
|
colcount[j]++;
|
||
|
} // check account for overlap in q
|
||
|
|
||
|
|
||
|
if (r.jleaf === 2) {
|
||
|
colcount[r.q]--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (parent[j] !== -1) {
|
||
|
w[ancestor + j] = parent[j];
|
||
|
}
|
||
|
} // sum up colcount's of each child
|
||
|
|
||
|
|
||
|
for (j = 0; j < n; j++) {
|
||
|
if (parent[j] !== -1) {
|
||
|
colcount[parent[j]] += colcount[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return colcount;
|
||
|
};
|
||
|
});
|