simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/solver/usolveAll.js

187 lines
5.3 KiB
JavaScript
Raw Normal View History

import { factory } from '../../../utils/factory.js';
import { createSolveValidation } from './utils/solveValidation.js';
var name = 'usolveAll';
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
export var createUsolveAll = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
divideScalar,
multiplyScalar,
subtract,
equalScalar,
DenseMatrix
} = _ref;
var solveValidation = createSolveValidation({
DenseMatrix
});
/**
* Finds all solutions of a linear equation system by backward substitution. Matrix must be an upper triangular matrix.
*
* `U * x = b`
*
* Syntax:
*
* math.usolveAll(U, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = usolveAll(a, b) // [ [[8], [9]] ]
*
* See also:
*
* usolve, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
var m = matrix(a);
var R = _denseBackwardSubstitution(m, b);
return R.map(r => r.valueOf());
}
});
function _denseBackwardSubstitution(m, b_) {
// the algorithm is derived from
// https://www.overleaf.com/read/csvgqdxggyjv
// array of right-hand sides
var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
var M = m._data;
var rows = m._size[0];
var columns = m._size[1]; // loop columns backwards
for (var i = columns - 1; i >= 0; i--) {
var L = B.length; // loop right-hand sides
for (var k = 0; k < L; k++) {
var b = B[k];
if (!equalScalar(M[i][i], 0)) {
// non-singular row
b[i] = divideScalar(b[i], M[i][i]);
for (var j = i - 1; j >= 0; j--) {
// b[j] -= b[i] * M[j,i]
b[j] = subtract(b[j], multiplyScalar(b[i], M[j][i]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
var bNew = [...b];
bNew[i] = 1;
for (var _j = i - 1; _j >= 0; _j--) {
bNew[_j] = subtract(bNew[_j], M[_j][i]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
function _sparseBackwardSubstitution(m, b_) {
// array of right-hand sides
var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
var rows = m._size[0];
var columns = m._size[1];
var values = m._values;
var index = m._index;
var ptr = m._ptr; // loop columns backwards
for (var i = columns - 1; i >= 0; i--) {
var L = B.length; // loop right-hand sides
for (var k = 0; k < L; k++) {
var b = B[k]; // values & indices (column i)
var iValues = [];
var iIndices = []; // first & last indeces in column
var firstIndex = ptr[i];
var lastIndex = ptr[i + 1]; // find the value at [i, i]
var Mii = 0;
for (var j = lastIndex - 1; j >= firstIndex; j--) {
var J = index[j]; // check row
if (J === i) {
Mii = values[j];
} else if (J < i) {
// store upper triangular
iValues.push(values[j]);
iIndices.push(J);
}
}
if (!equalScalar(Mii, 0)) {
// non-singular row
b[i] = divideScalar(b[i], Mii); // loop upper triangular
for (var _j2 = 0, _lastIndex = iIndices.length; _j2 < _lastIndex; _j2++) {
var _J = iIndices[_j2];
b[_J] = subtract(b[_J], multiplyScalar(b[i], iValues[_j2]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
var bNew = [...b];
bNew[i] = 1; // loop upper triangular
for (var _j3 = 0, _lastIndex2 = iIndices.length; _j3 < _lastIndex2; _j3++) {
var _J2 = iIndices[_j3];
bNew[_J2] = subtract(bNew[_J2], iValues[_j3]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
});