simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/solver/lsolve.js

161 lines
4.3 KiB
JavaScript
Raw Normal View History

import { factory } from '../../../utils/factory.js';
import { createSolveValidation } from './utils/solveValidation.js';
var name = 'lsolve';
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
export var createLsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
divideScalar,
multiplyScalar,
subtract,
equalScalar,
DenseMatrix
} = _ref;
var solveValidation = createSolveValidation({
DenseMatrix
});
/**
* Finds one solution of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix. Throws an error if there's no solution.
*
* `L * x = b`
*
* Syntax:
*
* math.lsolve(L, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = lsolve(a, b) // [[-5.5], [20]]
*
* See also:
*
* lsolveAll, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} L A N x N matrix or array (L)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
return _sparseForwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
return _denseForwardSubstitution(m, b);
},
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
var m = matrix(a);
var r = _denseForwardSubstitution(m, b);
return r.valueOf();
}
});
function _denseForwardSubstitution(m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
var bdata = b._data;
var rows = m._size[0];
var columns = m._size[1]; // result
var x = [];
var mdata = m._data; // loop columns
for (var j = 0; j < columns; j++) {
var bj = bdata[j][0] || 0;
var xj = void 0;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
var vjj = mdata[j][j];
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
xj = divideScalar(bj, vjj); // loop rows
for (var i = j + 1; i < rows; i++) {
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
}
} else {
// degenerate row, we can choose any value
xj = 0;
}
x[j] = [xj];
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
function _sparseForwardSubstitution(m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
var bdata = b._data;
var rows = m._size[0];
var columns = m._size[1];
var values = m._values;
var index = m._index;
var ptr = m._ptr; // result
var x = []; // loop columns
for (var j = 0; j < columns; j++) {
var bj = bdata[j][0] || 0;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
var vjj = 0; // matrix values & indices (column j)
var jValues = [];
var jIndices = []; // first and last index in the column
var firstIndex = ptr[j];
var lastIndex = ptr[j + 1]; // values in column, find value at [j, j]
for (var k = firstIndex; k < lastIndex; k++) {
var i = index[k]; // check row (rows are not sorted!)
if (i === j) {
vjj = values[k];
} else if (i > j) {
// store lower triangular
jValues.push(values[k]);
jIndices.push(i);
}
} // at this point we must have a value in vjj
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
var xj = divideScalar(bj, vjj);
for (var _k = 0, l = jIndices.length; _k < l; _k++) {
var _i = jIndices[_k];
bdata[_i] = [subtract(bdata[_i][0] || 0, multiplyScalar(xj, jValues[_k]))];
}
x[j] = [xj];
} else {
// degenerate row, we can choose any value
x[j] = [0];
}
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
});