100 lines
3.5 KiB
JavaScript
100 lines
3.5 KiB
JavaScript
|
import { isInteger } from '../../../utils/number.js';
|
||
|
import { factory } from '../../../utils/factory.js';
|
||
|
import { createCsSqr } from '../sparse/csSqr.js';
|
||
|
import { createCsLu } from '../sparse/csLu.js';
|
||
|
var name = 'slu';
|
||
|
var dependencies = ['typed', 'abs', 'add', 'multiply', 'transpose', 'divideScalar', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
|
||
|
export var createSlu = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
|
var {
|
||
|
typed,
|
||
|
abs,
|
||
|
add,
|
||
|
multiply,
|
||
|
transpose,
|
||
|
divideScalar,
|
||
|
subtract,
|
||
|
larger,
|
||
|
largerEq,
|
||
|
SparseMatrix
|
||
|
} = _ref;
|
||
|
var csSqr = createCsSqr({
|
||
|
add,
|
||
|
multiply,
|
||
|
transpose
|
||
|
});
|
||
|
var csLu = createCsLu({
|
||
|
abs,
|
||
|
divideScalar,
|
||
|
multiply,
|
||
|
subtract,
|
||
|
larger,
|
||
|
largerEq,
|
||
|
SparseMatrix
|
||
|
});
|
||
|
/**
|
||
|
* Calculate the Sparse Matrix LU decomposition with full pivoting. Sparse Matrix `A` is decomposed in two matrices (`L`, `U`) and two permutation vectors (`pinv`, `q`) where
|
||
|
*
|
||
|
* `P * A * Q = L * U`
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.slu(A, order, threshold)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* const A = math.sparse([[4,3], [6, 3]])
|
||
|
* math.slu(A, 1, 0.001)
|
||
|
* // returns:
|
||
|
* // {
|
||
|
* // L: [[1, 0], [1.5, 1]]
|
||
|
* // U: [[4, 3], [0, -1.5]]
|
||
|
* // p: [0, 1]
|
||
|
* // q: [0, 1]
|
||
|
* // }
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* lup, lsolve, usolve, lusolve
|
||
|
*
|
||
|
* @param {SparseMatrix} A A two dimensional sparse matrix for which to get the LU decomposition.
|
||
|
* @param {Number} order The Symbolic Ordering and Analysis order:
|
||
|
* 0 - Natural ordering, no permutation vector q is returned
|
||
|
* 1 - Matrix must be square, symbolic ordering and analisis is performed on M = A + A'
|
||
|
* 2 - Symbolic ordering and analisis is performed on M = A' * A. Dense columns from A' are dropped, A recreated from A'.
|
||
|
* This is appropriatefor LU factorization of unsymmetric matrices.
|
||
|
* 3 - Symbolic ordering and analisis is performed on M = A' * A. This is best used for LU factorization is matrix M has no dense rows.
|
||
|
* A dense row is a row with more than 10*sqr(columns) entries.
|
||
|
* @param {Number} threshold Partial pivoting threshold (1 for partial pivoting)
|
||
|
*
|
||
|
* @return {Object} The lower triangular matrix, the upper triangular matrix and the permutation vectors.
|
||
|
*/
|
||
|
|
||
|
return typed(name, {
|
||
|
'SparseMatrix, number, number': function SparseMatrixNumberNumber(a, order, threshold) {
|
||
|
// verify order
|
||
|
if (!isInteger(order) || order < 0 || order > 3) {
|
||
|
throw new Error('Symbolic Ordering and Analysis order must be an integer number in the interval [0, 3]');
|
||
|
} // verify threshold
|
||
|
|
||
|
|
||
|
if (threshold < 0 || threshold > 1) {
|
||
|
throw new Error('Partial pivoting threshold must be a number from 0 to 1');
|
||
|
} // perform symbolic ordering and analysis
|
||
|
|
||
|
|
||
|
var s = csSqr(order, a, false); // perform lu decomposition
|
||
|
|
||
|
var f = csLu(a, s, threshold); // return decomposition
|
||
|
|
||
|
return {
|
||
|
L: f.L,
|
||
|
U: f.U,
|
||
|
p: f.pinv,
|
||
|
q: s.q,
|
||
|
toString: function toString() {
|
||
|
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\np: ' + this.p.toString() + (this.q ? '\nq: ' + this.q.toString() : '') + '\n';
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
});
|
||
|
});
|