792 lines
24 KiB
JavaScript
792 lines
24 KiB
JavaScript
|
"use strict";
|
|||
|
|
|||
|
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
|
|||
|
|
|||
|
Object.defineProperty(exports, "__esModule", {
|
|||
|
value: true
|
|||
|
});
|
|||
|
exports.createComplexEigs = createComplexEigs;
|
|||
|
|
|||
|
var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray"));
|
|||
|
|
|||
|
var _object = require("../../../utils/object.js");
|
|||
|
|
|||
|
function _createForOfIteratorHelper(o, allowArrayLike) { var it = typeof Symbol !== "undefined" && o[Symbol.iterator] || o["@@iterator"]; if (!it) { if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") { if (it) o = it; var i = 0; var F = function F() {}; return { s: F, n: function n() { if (i >= o.length) return { done: true }; return { done: false, value: o[i++] }; }, e: function e(_e) { throw _e; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var normalCompletion = true, didErr = false, err; return { s: function s() { it = it.call(o); }, n: function n() { var step = it.next(); normalCompletion = step.done; return step; }, e: function e(_e2) { didErr = true; err = _e2; }, f: function f() { try { if (!normalCompletion && it.return != null) it.return(); } finally { if (didErr) throw err; } } }; }
|
|||
|
|
|||
|
function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); }
|
|||
|
|
|||
|
function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) { arr2[i] = arr[i]; } return arr2; }
|
|||
|
|
|||
|
function createComplexEigs(_ref) {
|
|||
|
var addScalar = _ref.addScalar,
|
|||
|
subtract = _ref.subtract,
|
|||
|
flatten = _ref.flatten,
|
|||
|
multiply = _ref.multiply,
|
|||
|
multiplyScalar = _ref.multiplyScalar,
|
|||
|
divideScalar = _ref.divideScalar,
|
|||
|
sqrt = _ref.sqrt,
|
|||
|
abs = _ref.abs,
|
|||
|
bignumber = _ref.bignumber,
|
|||
|
diag = _ref.diag,
|
|||
|
inv = _ref.inv,
|
|||
|
qr = _ref.qr,
|
|||
|
usolve = _ref.usolve,
|
|||
|
usolveAll = _ref.usolveAll,
|
|||
|
equal = _ref.equal,
|
|||
|
complex = _ref.complex,
|
|||
|
larger = _ref.larger,
|
|||
|
smaller = _ref.smaller,
|
|||
|
matrixFromColumns = _ref.matrixFromColumns,
|
|||
|
dot = _ref.dot;
|
|||
|
|
|||
|
/**
|
|||
|
* @param {number[][]} arr the matrix to find eigenvalues of
|
|||
|
* @param {number} N size of the matrix
|
|||
|
* @param {number|BigNumber} prec precision, anything lower will be considered zero
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @param {boolean} findVectors should we find eigenvectors?
|
|||
|
*
|
|||
|
* @returns {{ values: number[], vectors: number[][] }}
|
|||
|
*/
|
|||
|
function complexEigs(arr, N, prec, type, findVectors) {
|
|||
|
if (findVectors === undefined) {
|
|||
|
findVectors = true;
|
|||
|
} // TODO check if any row/col are zero except the diagonal
|
|||
|
// make sure corresponding rows and columns have similar magnitude
|
|||
|
// important because of numerical stability
|
|||
|
// MODIFIES arr by side effect!
|
|||
|
|
|||
|
|
|||
|
var R = balance(arr, N, prec, type, findVectors); // R is the row transformation matrix
|
|||
|
// arr = A' = R A R⁻¹, A is the original matrix
|
|||
|
// (if findVectors is false, R is undefined)
|
|||
|
// (And so to return to original matrix: A = R⁻¹ arr R)
|
|||
|
// TODO if magnitudes of elements vary over many orders,
|
|||
|
// move greatest elements to the top left corner
|
|||
|
// using similarity transformations, reduce the matrix
|
|||
|
// to Hessenberg form (upper triangular plus one subdiagonal row)
|
|||
|
// updates the transformation matrix R with new row operationsq
|
|||
|
// MODIFIES arr by side effect!
|
|||
|
|
|||
|
reduceToHessenberg(arr, N, prec, type, findVectors, R); // still true that original A = R⁻¹ arr R)
|
|||
|
// find eigenvalues
|
|||
|
|
|||
|
var _iterateUntilTriangul = iterateUntilTriangular(arr, N, prec, type, findVectors),
|
|||
|
values = _iterateUntilTriangul.values,
|
|||
|
C = _iterateUntilTriangul.C; // values is the list of eigenvalues, C is the column
|
|||
|
// transformation matrix that transforms arr, the hessenberg
|
|||
|
// matrix, to upper triangular
|
|||
|
// (So U = C⁻¹ arr C and the relationship between current arr
|
|||
|
// and original A is unchanged.)
|
|||
|
|
|||
|
|
|||
|
var vectors;
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
vectors = findEigenvectors(arr, N, C, R, values, prec, type);
|
|||
|
vectors = matrixFromColumns.apply(void 0, (0, _toConsumableArray2.default)(vectors));
|
|||
|
}
|
|||
|
|
|||
|
return {
|
|||
|
values: values,
|
|||
|
vectors: vectors
|
|||
|
};
|
|||
|
}
|
|||
|
/**
|
|||
|
* @param {number[][]} arr
|
|||
|
* @param {number} N
|
|||
|
* @param {number} prec
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @returns {number[][]}
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function balance(arr, N, prec, type, findVectors) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var realzero = big ? bignumber(0) : 0;
|
|||
|
var one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
|||
|
var realone = big ? bignumber(1) : 1; // base of the floating-point arithmetic
|
|||
|
|
|||
|
var radix = big ? bignumber(10) : 2;
|
|||
|
var radixSq = multiplyScalar(radix, radix); // the diagonal transformation matrix R
|
|||
|
|
|||
|
var Rdiag;
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
Rdiag = Array(N).fill(one);
|
|||
|
} // this isn't the only time we loop thru the matrix...
|
|||
|
|
|||
|
|
|||
|
var last = false;
|
|||
|
|
|||
|
while (!last) {
|
|||
|
// ...haha I'm joking! unless...
|
|||
|
last = true;
|
|||
|
|
|||
|
for (var i = 0; i < N; i++) {
|
|||
|
// compute the taxicab norm of i-th column and row
|
|||
|
// TODO optimize for complex numbers
|
|||
|
var colNorm = realzero;
|
|||
|
var rowNorm = realzero;
|
|||
|
|
|||
|
for (var j = 0; j < N; j++) {
|
|||
|
if (i === j) continue;
|
|||
|
var c = abs(arr[i][j]); // should be real
|
|||
|
|
|||
|
colNorm = addScalar(colNorm, c);
|
|||
|
rowNorm = addScalar(rowNorm, c);
|
|||
|
}
|
|||
|
|
|||
|
if (!equal(colNorm, 0) && !equal(rowNorm, 0)) {
|
|||
|
// find integer power closest to balancing the matrix
|
|||
|
// (we want to scale only by integer powers of radix,
|
|||
|
// so that we don't lose any precision due to round-off)
|
|||
|
var f = realone;
|
|||
|
var _c = colNorm;
|
|||
|
var rowDivRadix = divideScalar(rowNorm, radix);
|
|||
|
var rowMulRadix = multiplyScalar(rowNorm, radix);
|
|||
|
|
|||
|
while (smaller(_c, rowDivRadix)) {
|
|||
|
_c = multiplyScalar(_c, radixSq);
|
|||
|
f = multiplyScalar(f, radix);
|
|||
|
}
|
|||
|
|
|||
|
while (larger(_c, rowMulRadix)) {
|
|||
|
_c = divideScalar(_c, radixSq);
|
|||
|
f = divideScalar(f, radix);
|
|||
|
} // check whether balancing is needed
|
|||
|
// condition = (c + rowNorm) / f < 0.95 * (colNorm + rowNorm)
|
|||
|
|
|||
|
|
|||
|
var condition = smaller(divideScalar(addScalar(_c, rowNorm), f), multiplyScalar(addScalar(colNorm, rowNorm), 0.95)); // apply balancing similarity transformation
|
|||
|
|
|||
|
if (condition) {
|
|||
|
// we should loop once again to check whether
|
|||
|
// another rebalancing is needed
|
|||
|
last = false;
|
|||
|
var g = divideScalar(1, f);
|
|||
|
|
|||
|
for (var _j = 0; _j < N; _j++) {
|
|||
|
if (i === _j) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
arr[i][_j] = multiplyScalar(arr[i][_j], f);
|
|||
|
arr[_j][i] = multiplyScalar(arr[_j][i], g);
|
|||
|
} // keep track of transformations
|
|||
|
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
Rdiag[i] = multiplyScalar(Rdiag[i], f);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
} // return the diagonal row transformation matrix
|
|||
|
|
|||
|
|
|||
|
return diag(Rdiag);
|
|||
|
}
|
|||
|
/**
|
|||
|
* @param {number[][]} arr
|
|||
|
* @param {number} N
|
|||
|
* @param {number} prec
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @param {boolean} findVectors
|
|||
|
* @param {number[][]} R the row transformation matrix that will be modified
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function reduceToHessenberg(arr, N, prec, type, findVectors, R) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
|||
|
|
|||
|
if (big) {
|
|||
|
prec = bignumber(prec);
|
|||
|
}
|
|||
|
|
|||
|
for (var i = 0; i < N - 2; i++) {
|
|||
|
// Find the largest subdiag element in the i-th col
|
|||
|
var maxIndex = 0;
|
|||
|
var max = zero;
|
|||
|
|
|||
|
for (var j = i + 1; j < N; j++) {
|
|||
|
var el = arr[j][i];
|
|||
|
|
|||
|
if (smaller(abs(max), abs(el))) {
|
|||
|
max = el;
|
|||
|
maxIndex = j;
|
|||
|
}
|
|||
|
} // This col is pivoted, no need to do anything
|
|||
|
|
|||
|
|
|||
|
if (smaller(abs(max), prec)) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
if (maxIndex !== i + 1) {
|
|||
|
// Interchange maxIndex-th and (i+1)-th row
|
|||
|
var tmp1 = arr[maxIndex];
|
|||
|
arr[maxIndex] = arr[i + 1];
|
|||
|
arr[i + 1] = tmp1; // Interchange maxIndex-th and (i+1)-th column
|
|||
|
|
|||
|
for (var _j2 = 0; _j2 < N; _j2++) {
|
|||
|
var tmp2 = arr[_j2][maxIndex];
|
|||
|
arr[_j2][maxIndex] = arr[_j2][i + 1];
|
|||
|
arr[_j2][i + 1] = tmp2;
|
|||
|
} // keep track of transformations
|
|||
|
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
var tmp3 = R[maxIndex];
|
|||
|
R[maxIndex] = R[i + 1];
|
|||
|
R[i + 1] = tmp3;
|
|||
|
}
|
|||
|
} // Reduce following rows and columns
|
|||
|
|
|||
|
|
|||
|
for (var _j3 = i + 2; _j3 < N; _j3++) {
|
|||
|
var n = divideScalar(arr[_j3][i], max);
|
|||
|
|
|||
|
if (n === 0) {
|
|||
|
continue;
|
|||
|
} // from j-th row subtract n-times (i+1)th row
|
|||
|
|
|||
|
|
|||
|
for (var k = 0; k < N; k++) {
|
|||
|
arr[_j3][k] = subtract(arr[_j3][k], multiplyScalar(n, arr[i + 1][k]));
|
|||
|
} // to (i+1)th column add n-times j-th column
|
|||
|
|
|||
|
|
|||
|
for (var _k = 0; _k < N; _k++) {
|
|||
|
arr[_k][i + 1] = addScalar(arr[_k][i + 1], multiplyScalar(n, arr[_k][_j3]));
|
|||
|
} // keep track of transformations
|
|||
|
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
for (var _k2 = 0; _k2 < N; _k2++) {
|
|||
|
R[_j3][_k2] = subtract(R[_j3][_k2], multiplyScalar(n, R[i + 1][_k2]));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return R;
|
|||
|
}
|
|||
|
/**
|
|||
|
* @returns {{values: values, C: Matrix}}
|
|||
|
* @see Press, Wiliams: Numerical recipes in Fortran 77
|
|||
|
* @see https://en.wikipedia.org/wiki/QR_algorithm
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function iterateUntilTriangular(A, N, prec, type, findVectors) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
|||
|
|
|||
|
if (big) {
|
|||
|
prec = bignumber(prec);
|
|||
|
} // The Francis Algorithm
|
|||
|
// The core idea of this algorithm is that doing successive
|
|||
|
// A' = Q⁺AQ transformations will eventually converge to block-
|
|||
|
// upper-triangular with diagonal blocks either 1x1 or 2x2.
|
|||
|
// The Q here is the one from the QR decomposition, A = QR.
|
|||
|
// Since the eigenvalues of a block-upper-triangular matrix are
|
|||
|
// the eigenvalues of its diagonal blocks and we know how to find
|
|||
|
// eigenvalues of a 2x2 matrix, we know the eigenvalues of A.
|
|||
|
|
|||
|
|
|||
|
var arr = (0, _object.clone)(A); // the list of converged eigenvalues
|
|||
|
|
|||
|
var lambdas = []; // size of arr, which will get smaller as eigenvalues converge
|
|||
|
|
|||
|
var n = N; // the diagonal of the block-diagonal matrix that turns
|
|||
|
// converged 2x2 matrices into upper triangular matrices
|
|||
|
|
|||
|
var Sdiag = []; // N×N matrix describing the overall transformation done during the QR algorithm
|
|||
|
|
|||
|
var Qtotal = findVectors ? diag(Array(N).fill(one)) : undefined; // n×n matrix describing the QR transformations done since last convergence
|
|||
|
|
|||
|
var Qpartial = findVectors ? diag(Array(n).fill(one)) : undefined; // last eigenvalue converged before this many steps
|
|||
|
|
|||
|
var lastConvergenceBefore = 0;
|
|||
|
|
|||
|
while (lastConvergenceBefore <= 100) {
|
|||
|
lastConvergenceBefore += 1; // TODO if the convergence is slow, do something clever
|
|||
|
// Perform the factorization
|
|||
|
|
|||
|
var k = 0; // TODO set close to an eigenvalue
|
|||
|
|
|||
|
for (var i = 0; i < n; i++) {
|
|||
|
arr[i][i] = subtract(arr[i][i], k);
|
|||
|
} // TODO do an implicit QR transformation
|
|||
|
|
|||
|
|
|||
|
var _qr = qr(arr),
|
|||
|
Q = _qr.Q,
|
|||
|
R = _qr.R;
|
|||
|
|
|||
|
arr = multiply(R, Q);
|
|||
|
|
|||
|
for (var _i = 0; _i < n; _i++) {
|
|||
|
arr[_i][_i] = addScalar(arr[_i][_i], k);
|
|||
|
} // keep track of transformations
|
|||
|
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
Qpartial = multiply(Qpartial, Q);
|
|||
|
} // The rightmost diagonal element converged to an eigenvalue
|
|||
|
|
|||
|
|
|||
|
if (n === 1 || smaller(abs(arr[n - 1][n - 2]), prec)) {
|
|||
|
lastConvergenceBefore = 0;
|
|||
|
lambdas.push(arr[n - 1][n - 1]); // keep track of transformations
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
Sdiag.unshift([[1]]);
|
|||
|
inflateMatrix(Qpartial, N);
|
|||
|
Qtotal = multiply(Qtotal, Qpartial);
|
|||
|
|
|||
|
if (n > 1) {
|
|||
|
Qpartial = diag(Array(n - 1).fill(one));
|
|||
|
}
|
|||
|
} // reduce the matrix size
|
|||
|
|
|||
|
|
|||
|
n -= 1;
|
|||
|
arr.pop();
|
|||
|
|
|||
|
for (var _i2 = 0; _i2 < n; _i2++) {
|
|||
|
arr[_i2].pop();
|
|||
|
} // The rightmost diagonal 2x2 block converged
|
|||
|
|
|||
|
} else if (n === 2 || smaller(abs(arr[n - 2][n - 3]), prec)) {
|
|||
|
lastConvergenceBefore = 0;
|
|||
|
var ll = eigenvalues2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1]);
|
|||
|
lambdas.push.apply(lambdas, (0, _toConsumableArray2.default)(ll)); // keep track of transformations
|
|||
|
|
|||
|
if (findVectors) {
|
|||
|
Sdiag.unshift(jordanBase2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1], ll[0], ll[1], prec, type));
|
|||
|
inflateMatrix(Qpartial, N);
|
|||
|
Qtotal = multiply(Qtotal, Qpartial);
|
|||
|
|
|||
|
if (n > 2) {
|
|||
|
Qpartial = diag(Array(n - 2).fill(one));
|
|||
|
}
|
|||
|
} // reduce the matrix size
|
|||
|
|
|||
|
|
|||
|
n -= 2;
|
|||
|
arr.pop();
|
|||
|
arr.pop();
|
|||
|
|
|||
|
for (var _i3 = 0; _i3 < n; _i3++) {
|
|||
|
arr[_i3].pop();
|
|||
|
|
|||
|
arr[_i3].pop();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (n === 0) {
|
|||
|
break;
|
|||
|
}
|
|||
|
} // standard sorting
|
|||
|
|
|||
|
|
|||
|
lambdas.sort(function (a, b) {
|
|||
|
return +subtract(abs(a), abs(b));
|
|||
|
}); // the algorithm didn't converge
|
|||
|
|
|||
|
if (lastConvergenceBefore > 100) {
|
|||
|
var err = Error('The eigenvalues failed to converge. Only found these eigenvalues: ' + lambdas.join(', '));
|
|||
|
err.values = lambdas;
|
|||
|
err.vectors = [];
|
|||
|
throw err;
|
|||
|
} // combine the overall QR transformation Qtotal with the subsequent
|
|||
|
// transformation S that turns the diagonal 2x2 blocks to upper triangular
|
|||
|
|
|||
|
|
|||
|
var C = findVectors ? multiply(Qtotal, blockDiag(Sdiag, N)) : undefined;
|
|||
|
return {
|
|||
|
values: lambdas,
|
|||
|
C: C
|
|||
|
};
|
|||
|
}
|
|||
|
/**
|
|||
|
* @param {Matrix} A hessenberg-form matrix
|
|||
|
* @param {number} N size of A
|
|||
|
* @param {Matrix} C column transformation matrix that turns A into upper triangular
|
|||
|
* @param {Matrix} R similarity that turns original matrix into A
|
|||
|
* @param {number[]} values array of eigenvalues of A
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @returns {number[][]} eigenvalues
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function findEigenvectors(A, N, C, R, values, prec, type) {
|
|||
|
var Cinv = inv(C);
|
|||
|
var U = multiply(Cinv, A, C);
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
|||
|
var one = big ? bignumber(1) : cplx ? complex(1) : 1; // turn values into a kind of "multiset"
|
|||
|
// this way it is easier to find eigenvectors
|
|||
|
|
|||
|
var uniqueValues = [];
|
|||
|
var multiplicities = [];
|
|||
|
|
|||
|
var _iterator = _createForOfIteratorHelper(values),
|
|||
|
_step;
|
|||
|
|
|||
|
try {
|
|||
|
for (_iterator.s(); !(_step = _iterator.n()).done;) {
|
|||
|
var λ = _step.value;
|
|||
|
|
|||
|
var _i4 = indexOf(uniqueValues, λ, equal);
|
|||
|
|
|||
|
if (_i4 === -1) {
|
|||
|
uniqueValues.push(λ);
|
|||
|
multiplicities.push(1);
|
|||
|
} else {
|
|||
|
multiplicities[_i4] += 1;
|
|||
|
}
|
|||
|
} // find eigenvectors by solving U − λE = 0
|
|||
|
// TODO replace with an iterative eigenvector algorithm
|
|||
|
// (this one might fail for imprecise eigenvalues)
|
|||
|
|
|||
|
} catch (err) {
|
|||
|
_iterator.e(err);
|
|||
|
} finally {
|
|||
|
_iterator.f();
|
|||
|
}
|
|||
|
|
|||
|
var vectors = [];
|
|||
|
var len = uniqueValues.length;
|
|||
|
var b = Array(N).fill(zero);
|
|||
|
var E = diag(Array(N).fill(one)); // eigenvalues for which usolve failed (due to numerical error)
|
|||
|
|
|||
|
var failedLambdas = [];
|
|||
|
|
|||
|
var _loop = function _loop(i) {
|
|||
|
var λ = uniqueValues[i];
|
|||
|
var S = subtract(U, multiply(λ, E)); // the characteristic matrix
|
|||
|
|
|||
|
var solutions = usolveAll(S, b);
|
|||
|
solutions.shift(); // ignore the null vector
|
|||
|
// looks like we missed something, try inverse iteration
|
|||
|
|
|||
|
while (solutions.length < multiplicities[i]) {
|
|||
|
var approxVec = inverseIterate(S, N, solutions, prec, type);
|
|||
|
|
|||
|
if (approxVec == null) {
|
|||
|
// no more vectors were found
|
|||
|
failedLambdas.push(λ);
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
solutions.push(approxVec);
|
|||
|
} // Transform back into original array coordinates
|
|||
|
|
|||
|
|
|||
|
var correction = multiply(inv(R), C);
|
|||
|
solutions = solutions.map(function (v) {
|
|||
|
return multiply(correction, v);
|
|||
|
});
|
|||
|
vectors.push.apply(vectors, (0, _toConsumableArray2.default)(solutions.map(function (v) {
|
|||
|
return flatten(v);
|
|||
|
})));
|
|||
|
};
|
|||
|
|
|||
|
for (var i = 0; i < len; i++) {
|
|||
|
_loop(i);
|
|||
|
}
|
|||
|
|
|||
|
if (failedLambdas.length !== 0) {
|
|||
|
var err = new Error('Failed to find eigenvectors for the following eigenvalues: ' + failedLambdas.join(', '));
|
|||
|
err.values = values;
|
|||
|
err.vectors = vectors;
|
|||
|
throw err;
|
|||
|
}
|
|||
|
|
|||
|
return vectors;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Compute the eigenvalues of an 2x2 matrix
|
|||
|
* @return {[number,number]}
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function eigenvalues2x2(a, b, c, d) {
|
|||
|
// λ± = ½ trA ± ½ √( tr²A - 4 detA )
|
|||
|
var trA = addScalar(a, d);
|
|||
|
var detA = subtract(multiplyScalar(a, d), multiplyScalar(b, c));
|
|||
|
var x = multiplyScalar(trA, 0.5);
|
|||
|
var y = multiplyScalar(sqrt(subtract(multiplyScalar(trA, trA), multiplyScalar(4, detA))), 0.5);
|
|||
|
return [addScalar(x, y), subtract(x, y)];
|
|||
|
}
|
|||
|
/**
|
|||
|
* For an 2x2 matrix compute the transformation matrix S,
|
|||
|
* so that SAS⁻¹ is an upper triangular matrix
|
|||
|
* @return {[[number,number],[number,number]]}
|
|||
|
* @see https://math.berkeley.edu/~ogus/old/Math_54-05/webfoils/jordan.pdf
|
|||
|
* @see http://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function jordanBase2x2(a, b, c, d, l1, l2, prec, type) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
|||
|
var one = big ? bignumber(1) : cplx ? complex(1) : 1; // matrix is already upper triangular
|
|||
|
// return an identity matrix
|
|||
|
|
|||
|
if (smaller(abs(c), prec)) {
|
|||
|
return [[one, zero], [zero, one]];
|
|||
|
} // matrix is diagonalizable
|
|||
|
// return its eigenvectors as columns
|
|||
|
|
|||
|
|
|||
|
if (larger(abs(subtract(l1, l2)), prec)) {
|
|||
|
return [[subtract(l1, d), subtract(l2, d)], [c, c]];
|
|||
|
} // matrix is not diagonalizable
|
|||
|
// compute off-diagonal elements of N = A - λI
|
|||
|
// N₁₂ = 0 ⇒ S = ( N⃗₁, I⃗₁ )
|
|||
|
// N₁₂ ≠ 0 ⇒ S = ( N⃗₂, I⃗₂ )
|
|||
|
|
|||
|
|
|||
|
var na = subtract(a, l1);
|
|||
|
var nb = subtract(b, l1);
|
|||
|
var nc = subtract(c, l1);
|
|||
|
var nd = subtract(d, l1);
|
|||
|
|
|||
|
if (smaller(abs(nb), prec)) {
|
|||
|
return [[na, one], [nc, zero]];
|
|||
|
} else {
|
|||
|
return [[nb, zero], [nd, one]];
|
|||
|
}
|
|||
|
}
|
|||
|
/**
|
|||
|
* Enlarge the matrix from n×n to N×N, setting the new
|
|||
|
* elements to 1 on diagonal and 0 elsewhere
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function inflateMatrix(arr, N) {
|
|||
|
// add columns
|
|||
|
for (var i = 0; i < arr.length; i++) {
|
|||
|
var _arr$i;
|
|||
|
|
|||
|
(_arr$i = arr[i]).push.apply(_arr$i, (0, _toConsumableArray2.default)(Array(N - arr[i].length).fill(0)));
|
|||
|
} // add rows
|
|||
|
|
|||
|
|
|||
|
for (var _i5 = arr.length; _i5 < N; _i5++) {
|
|||
|
arr.push(Array(N).fill(0));
|
|||
|
arr[_i5][_i5] = 1;
|
|||
|
}
|
|||
|
|
|||
|
return arr;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Create a block-diagonal matrix with the given square matrices on the diagonal
|
|||
|
* @param {Matrix[] | number[][][]} arr array of matrices to be placed on the diagonal
|
|||
|
* @param {number} N the size of the resulting matrix
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function blockDiag(arr, N) {
|
|||
|
var M = [];
|
|||
|
|
|||
|
for (var i = 0; i < N; i++) {
|
|||
|
M[i] = Array(N).fill(0);
|
|||
|
}
|
|||
|
|
|||
|
var I = 0;
|
|||
|
|
|||
|
var _iterator2 = _createForOfIteratorHelper(arr),
|
|||
|
_step2;
|
|||
|
|
|||
|
try {
|
|||
|
for (_iterator2.s(); !(_step2 = _iterator2.n()).done;) {
|
|||
|
var sub = _step2.value;
|
|||
|
var n = sub.length;
|
|||
|
|
|||
|
for (var _i6 = 0; _i6 < n; _i6++) {
|
|||
|
for (var j = 0; j < n; j++) {
|
|||
|
M[I + _i6][I + j] = sub[_i6][j];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
I += n;
|
|||
|
}
|
|||
|
} catch (err) {
|
|||
|
_iterator2.e(err);
|
|||
|
} finally {
|
|||
|
_iterator2.f();
|
|||
|
}
|
|||
|
|
|||
|
return M;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Finds the index of an element in an array using a custom equality function
|
|||
|
* @template T
|
|||
|
* @param {Array<T>} arr array in which to search
|
|||
|
* @param {T} el the element to find
|
|||
|
* @param {function(T, T): boolean} fn the equality function, first argument is an element of `arr`, the second is always `el`
|
|||
|
* @returns {number} the index of `el`, or -1 when it's not in `arr`
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function indexOf(arr, el, fn) {
|
|||
|
for (var i = 0; i < arr.length; i++) {
|
|||
|
if (fn(arr[i], el)) {
|
|||
|
return i;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return -1;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Provided a near-singular upper-triangular matrix A and a list of vectors,
|
|||
|
* finds an eigenvector of A with the smallest eigenvalue, which is orthogonal
|
|||
|
* to each vector in the list
|
|||
|
* @template T
|
|||
|
* @param {T[][]} A near-singular square matrix
|
|||
|
* @param {number} N dimension
|
|||
|
* @param {T[][]} orthog list of vectors
|
|||
|
* @param {number} prec epsilon
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @return {T[] | null} eigenvector
|
|||
|
*
|
|||
|
* @see Numerical Recipes for Fortran 77 – 11.7 Eigenvalues or Eigenvectors by Inverse Iteration
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function inverseIterate(A, N, orthog, prec, type) {
|
|||
|
var largeNum = type === 'BigNumber' ? bignumber(1000) : 1000;
|
|||
|
var b; // the vector
|
|||
|
// you better choose a random vector before I count to five
|
|||
|
|
|||
|
var i = 0;
|
|||
|
|
|||
|
while (true) {
|
|||
|
b = randomOrthogonalVector(N, orthog, type);
|
|||
|
b = usolve(A, b);
|
|||
|
|
|||
|
if (larger(norm(b), largeNum)) {
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (++i >= 5) {
|
|||
|
return null;
|
|||
|
}
|
|||
|
} // you better converge before I count to ten
|
|||
|
|
|||
|
|
|||
|
i = 0;
|
|||
|
|
|||
|
while (true) {
|
|||
|
var c = usolve(A, b);
|
|||
|
|
|||
|
if (smaller(norm(orthogonalComplement(b, [c])), prec)) {
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (++i >= 10) {
|
|||
|
return null;
|
|||
|
}
|
|||
|
|
|||
|
b = normalize(c);
|
|||
|
}
|
|||
|
|
|||
|
return b;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Generates a random unit vector of dimension N, orthogonal to each vector in the list
|
|||
|
* @template T
|
|||
|
* @param {number} N dimension
|
|||
|
* @param {T[][]} orthog list of vectors
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @returns {T[]} random vector
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function randomOrthogonalVector(N, orthog, type) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex'; // generate random vector with the correct type
|
|||
|
|
|||
|
var v = Array(N).fill(0).map(function (_) {
|
|||
|
return 2 * Math.random() - 1;
|
|||
|
});
|
|||
|
|
|||
|
if (big) {
|
|||
|
v = v.map(function (n) {
|
|||
|
return bignumber(n);
|
|||
|
});
|
|||
|
}
|
|||
|
|
|||
|
if (cplx) {
|
|||
|
v = v.map(function (n) {
|
|||
|
return complex(n);
|
|||
|
});
|
|||
|
} // project to orthogonal complement
|
|||
|
|
|||
|
|
|||
|
v = orthogonalComplement(v, orthog); // normalize
|
|||
|
|
|||
|
return normalize(v, type);
|
|||
|
}
|
|||
|
/**
|
|||
|
* Project vector v to the orthogonal complement of an array of vectors
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function orthogonalComplement(v, orthog) {
|
|||
|
var _iterator3 = _createForOfIteratorHelper(orthog),
|
|||
|
_step3;
|
|||
|
|
|||
|
try {
|
|||
|
for (_iterator3.s(); !(_step3 = _iterator3.n()).done;) {
|
|||
|
var w = _step3.value;
|
|||
|
// v := v − (w, v)/∥w∥² w
|
|||
|
v = subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w));
|
|||
|
}
|
|||
|
} catch (err) {
|
|||
|
_iterator3.e(err);
|
|||
|
} finally {
|
|||
|
_iterator3.f();
|
|||
|
}
|
|||
|
|
|||
|
return v;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Calculate the norm of a vector.
|
|||
|
* We can't use math.norm because factory can't handle circular dependency.
|
|||
|
* Seriously, I'm really fed up with factory.
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function norm(v) {
|
|||
|
return abs(sqrt(dot(v, v)));
|
|||
|
}
|
|||
|
/**
|
|||
|
* Normalize a vector
|
|||
|
* @template T
|
|||
|
* @param {T[]} v
|
|||
|
* @param {'number'|'BigNumber'|'Complex'} type
|
|||
|
* @returns {T[]} normalized vec
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
function normalize(v, type) {
|
|||
|
var big = type === 'BigNumber';
|
|||
|
var cplx = type === 'Complex';
|
|||
|
var one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
|||
|
return multiply(divideScalar(one, norm(v)), v);
|
|||
|
}
|
|||
|
|
|||
|
return complexEigs;
|
|||
|
}
|