simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/solver/usolve.js

166 lines
4.4 KiB
JavaScript
Raw Normal View History

import { factory } from '../../../utils/factory.js';
import { createSolveValidation } from './utils/solveValidation.js';
var name = 'usolve';
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
export var createUsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
divideScalar,
multiplyScalar,
subtract,
equalScalar,
DenseMatrix
} = _ref;
var solveValidation = createSolveValidation({
DenseMatrix
});
/**
* Finds one solution of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. Throws an error if there's no solution.
*
* `U * x = b`
*
* Syntax:
*
* math.usolve(U, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = usolve(a, b) // [[8], [9]]
*
* See also:
*
* usolveAll, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
var m = matrix(a);
var r = _denseBackwardSubstitution(m, b);
return r.valueOf();
}
});
function _denseBackwardSubstitution(m, b) {
// make b into a column vector
b = solveValidation(m, b, true);
var bdata = b._data;
var rows = m._size[0];
var columns = m._size[1]; // result
var x = [];
var mdata = m._data; // loop columns backwards
for (var j = columns - 1; j >= 0; j--) {
// b[j]
var bj = bdata[j][0] || 0; // x[j]
var xj = void 0;
if (!equalScalar(bj, 0)) {
// value at [j, j]
var vjj = mdata[j][j];
if (equalScalar(vjj, 0)) {
// system cannot be solved
throw new Error('Linear system cannot be solved since matrix is singular');
}
xj = divideScalar(bj, vjj); // loop rows
for (var i = j - 1; i >= 0; i--) {
// update copy of b
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
}
} else {
// zero value at j
xj = 0;
} // update x
x[j] = [xj];
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
function _sparseBackwardSubstitution(m, b) {
// make b into a column vector
b = solveValidation(m, b, true);
var bdata = b._data;
var rows = m._size[0];
var columns = m._size[1];
var values = m._values;
var index = m._index;
var ptr = m._ptr; // result
var x = []; // loop columns backwards
for (var j = columns - 1; j >= 0; j--) {
var bj = bdata[j][0] || 0;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
var vjj = 0; // upper triangular matrix values & index (column j)
var jValues = [];
var jIndices = []; // first & last indeces in column
var firstIndex = ptr[j];
var lastIndex = ptr[j + 1]; // values in column, find value at [j, j], loop backwards
for (var k = lastIndex - 1; k >= firstIndex; k--) {
var i = index[k]; // check row (rows are not sorted!)
if (i === j) {
vjj = values[k];
} else if (i < j) {
// store upper triangular
jValues.push(values[k]);
jIndices.push(i);
}
} // at this point we must have a value in vjj
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
var xj = divideScalar(bj, vjj);
for (var _k = 0, _lastIndex = jIndices.length; _k < _lastIndex; _k++) {
var _i = jIndices[_k];
bdata[_i] = [subtract(bdata[_i][0], multiplyScalar(xj, jValues[_k]))];
}
x[j] = [xj];
} else {
// degenerate row, we can choose any value
x[j] = [0];
}
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
});