166 lines
4.4 KiB
JavaScript
166 lines
4.4 KiB
JavaScript
|
import { factory } from '../../../utils/factory.js';
|
||
|
import { createSolveValidation } from './utils/solveValidation.js';
|
||
|
var name = 'usolve';
|
||
|
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
|
||
|
export var createUsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
|
var {
|
||
|
typed,
|
||
|
matrix,
|
||
|
divideScalar,
|
||
|
multiplyScalar,
|
||
|
subtract,
|
||
|
equalScalar,
|
||
|
DenseMatrix
|
||
|
} = _ref;
|
||
|
var solveValidation = createSolveValidation({
|
||
|
DenseMatrix
|
||
|
});
|
||
|
/**
|
||
|
* Finds one solution of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. Throws an error if there's no solution.
|
||
|
*
|
||
|
* `U * x = b`
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.usolve(U, b)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* const a = [[-2, 3], [2, 1]]
|
||
|
* const b = [11, 9]
|
||
|
* const x = usolve(a, b) // [[8], [9]]
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* usolveAll, lup, slu, usolve, lusolve
|
||
|
*
|
||
|
* @param {Matrix, Array} U A N x N matrix or array (U)
|
||
|
* @param {Matrix, Array} b A column vector with the b values
|
||
|
*
|
||
|
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
|
||
|
*/
|
||
|
|
||
|
return typed(name, {
|
||
|
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
|
||
|
return _sparseBackwardSubstitution(m, b);
|
||
|
},
|
||
|
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
|
||
|
return _denseBackwardSubstitution(m, b);
|
||
|
},
|
||
|
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
|
||
|
var m = matrix(a);
|
||
|
|
||
|
var r = _denseBackwardSubstitution(m, b);
|
||
|
|
||
|
return r.valueOf();
|
||
|
}
|
||
|
});
|
||
|
|
||
|
function _denseBackwardSubstitution(m, b) {
|
||
|
// make b into a column vector
|
||
|
b = solveValidation(m, b, true);
|
||
|
var bdata = b._data;
|
||
|
var rows = m._size[0];
|
||
|
var columns = m._size[1]; // result
|
||
|
|
||
|
var x = [];
|
||
|
var mdata = m._data; // loop columns backwards
|
||
|
|
||
|
for (var j = columns - 1; j >= 0; j--) {
|
||
|
// b[j]
|
||
|
var bj = bdata[j][0] || 0; // x[j]
|
||
|
|
||
|
var xj = void 0;
|
||
|
|
||
|
if (!equalScalar(bj, 0)) {
|
||
|
// value at [j, j]
|
||
|
var vjj = mdata[j][j];
|
||
|
|
||
|
if (equalScalar(vjj, 0)) {
|
||
|
// system cannot be solved
|
||
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
||
|
}
|
||
|
|
||
|
xj = divideScalar(bj, vjj); // loop rows
|
||
|
|
||
|
for (var i = j - 1; i >= 0; i--) {
|
||
|
// update copy of b
|
||
|
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
|
||
|
}
|
||
|
} else {
|
||
|
// zero value at j
|
||
|
xj = 0;
|
||
|
} // update x
|
||
|
|
||
|
|
||
|
x[j] = [xj];
|
||
|
}
|
||
|
|
||
|
return new DenseMatrix({
|
||
|
data: x,
|
||
|
size: [rows, 1]
|
||
|
});
|
||
|
}
|
||
|
|
||
|
function _sparseBackwardSubstitution(m, b) {
|
||
|
// make b into a column vector
|
||
|
b = solveValidation(m, b, true);
|
||
|
var bdata = b._data;
|
||
|
var rows = m._size[0];
|
||
|
var columns = m._size[1];
|
||
|
var values = m._values;
|
||
|
var index = m._index;
|
||
|
var ptr = m._ptr; // result
|
||
|
|
||
|
var x = []; // loop columns backwards
|
||
|
|
||
|
for (var j = columns - 1; j >= 0; j--) {
|
||
|
var bj = bdata[j][0] || 0;
|
||
|
|
||
|
if (!equalScalar(bj, 0)) {
|
||
|
// non-degenerate row, find solution
|
||
|
var vjj = 0; // upper triangular matrix values & index (column j)
|
||
|
|
||
|
var jValues = [];
|
||
|
var jIndices = []; // first & last indeces in column
|
||
|
|
||
|
var firstIndex = ptr[j];
|
||
|
var lastIndex = ptr[j + 1]; // values in column, find value at [j, j], loop backwards
|
||
|
|
||
|
for (var k = lastIndex - 1; k >= firstIndex; k--) {
|
||
|
var i = index[k]; // check row (rows are not sorted!)
|
||
|
|
||
|
if (i === j) {
|
||
|
vjj = values[k];
|
||
|
} else if (i < j) {
|
||
|
// store upper triangular
|
||
|
jValues.push(values[k]);
|
||
|
jIndices.push(i);
|
||
|
}
|
||
|
} // at this point we must have a value in vjj
|
||
|
|
||
|
|
||
|
if (equalScalar(vjj, 0)) {
|
||
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
||
|
}
|
||
|
|
||
|
var xj = divideScalar(bj, vjj);
|
||
|
|
||
|
for (var _k = 0, _lastIndex = jIndices.length; _k < _lastIndex; _k++) {
|
||
|
var _i = jIndices[_k];
|
||
|
bdata[_i] = [subtract(bdata[_i][0], multiplyScalar(xj, jValues[_k]))];
|
||
|
}
|
||
|
|
||
|
x[j] = [xj];
|
||
|
} else {
|
||
|
// degenerate row, we can choose any value
|
||
|
x[j] = [0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return new DenseMatrix({
|
||
|
data: x,
|
||
|
size: [rows, 1]
|
||
|
});
|
||
|
}
|
||
|
});
|