simple-squiggle/node_modules/mathjs/lib/esm/function/utils/isPrime.js

142 lines
3.8 KiB
JavaScript
Raw Normal View History

import { deepMap } from '../../utils/collection.js';
import { factory } from '../../utils/factory.js';
var name = 'isPrime';
var dependencies = ['typed'];
export var createIsPrime = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed
} = _ref;
/**
* Test whether a value is prime: has no divisors other than itself and one.
* The function supports type `number`, `bignumber`.
*
* The function is evaluated element-wise in case of Array or Matrix input.
*
* Syntax:
*
* math.isPrime(x)
*
* Examples:
*
* math.isPrime(3) // returns true
* math.isPrime(-2) // returns false
* math.isPrime(0) // returns false
* math.isPrime(-0) // returns false
* math.isPrime(0.5) // returns false
* math.isPrime('2') // returns true
* math.isPrime([2, 17, 100]) // returns [true, true, false]
*
* See also:
*
* isNumeric, isZero, isNegative, isInteger
*
* @param {number | BigNumber | Array | Matrix} x Value to be tested
* @return {boolean} Returns true when `x` is larger than zero.
* Throws an error in case of an unknown data type.
*/
return typed(name, {
number: function number(x) {
if (x * 0 !== 0) {
return false;
}
if (x <= 3) {
return x > 1;
}
if (x % 2 === 0 || x % 3 === 0) {
return false;
}
for (var i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
},
BigNumber: function BigNumber(n) {
if (n.toNumber() * 0 !== 0) {
return false;
}
if (n.lte(3)) return n.gt(1);
if (n.mod(2).eq(0) || n.mod(3).eq(0)) return false;
if (n.lt(Math.pow(2, 32))) {
var x = n.toNumber();
for (var i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
}
function modPow(base, exponent, modulus) {
// exponent can be huge, use non-recursive variant
var accumulator = 1;
while (!exponent.eq(0)) {
if (exponent.mod(2).eq(0)) {
exponent = exponent.div(2);
base = base.mul(base).mod(modulus);
} else {
exponent = exponent.sub(1);
accumulator = base.mul(accumulator).mod(modulus);
}
}
return accumulator;
} // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
var Decimal = n.constructor.clone({
precision: n.toFixed(0).length * 2
});
n = new Decimal(n);
var r = 0;
var d = n.sub(1);
while (d.mod(2).eq(0)) {
d = d.div(2);
r += 1;
}
var bases = null; // https://en.wikipedia.org/wiki/MillerRabin_primality_test#Testing_against_small_sets_of_bases
if (n.lt('3317044064679887385961981')) {
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41].filter(x => x < n);
} else {
var max = Math.min(n.toNumber() - 2, Math.floor(2 * Math.pow(n.toFixed(0).length * Math.log(10), 2)));
bases = [];
for (var _i = 2; _i <= max; _i += 1) {
bases.push(max);
}
}
for (var _i2 = 0; _i2 < bases.length; _i2 += 1) {
var a = bases[_i2];
var adn = modPow(n.sub(n).add(a), d, n);
if (!adn.eq(1)) {
for (var _i3 = 0, _x = adn; !_x.eq(n.sub(1)); _i3 += 1, _x = _x.mul(_x).mod(n)) {
if (_i3 === r - 1) {
return false;
}
}
}
}
return true;
},
'Array | Matrix': function ArrayMatrix(x) {
return deepMap(x, this);
}
});
});