simple-squiggle/node_modules/mathjs/lib/esm/function/matrix/eigs.js

280 lines
6.8 KiB
JavaScript
Raw Normal View History

import { factory } from '../../utils/factory.js';
import { format } from '../../utils/string.js';
import { createComplexEigs } from './eigs/complexEigs.js';
import { createRealSymmetric } from './eigs/realSymetric.js';
import { typeOf, isNumber, isBigNumber, isComplex, isFraction } from '../../utils/is.js';
var name = 'eigs'; // The absolute state of math.js's dependency system:
var dependencies = ['config', 'typed', 'matrix', 'addScalar', 'equal', 'subtract', 'abs', 'atan', 'cos', 'sin', 'multiplyScalar', 'divideScalar', 'inv', 'bignumber', 'multiply', 'add', 'larger', 'column', 'flatten', 'number', 'complex', 'sqrt', 'diag', 'qr', 'usolve', 'usolveAll', 'im', 're', 'smaller', 'matrixFromColumns', 'dot'];
export var createEigs = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
config,
typed,
matrix,
addScalar,
subtract,
equal,
abs,
atan,
cos,
sin,
multiplyScalar,
divideScalar,
inv,
bignumber,
multiply,
add,
larger,
column,
flatten,
number,
complex,
sqrt,
diag,
qr,
usolve,
usolveAll,
im,
re,
smaller,
matrixFromColumns,
dot
} = _ref;
var doRealSymetric = createRealSymmetric({
config,
addScalar,
subtract,
column,
flatten,
equal,
abs,
atan,
cos,
sin,
multiplyScalar,
inv,
bignumber,
complex,
multiply,
add
});
var doComplexEigs = createComplexEigs({
config,
addScalar,
subtract,
multiply,
multiplyScalar,
flatten,
divideScalar,
sqrt,
abs,
bignumber,
diag,
qr,
inv,
usolve,
usolveAll,
equal,
complex,
larger,
smaller,
matrixFromColumns,
dot
});
/**
* Compute eigenvalues and eigenvectors of a matrix. The eigenvalues are sorted by their absolute value, ascending.
* An eigenvalue with multiplicity k will be listed k times. The eigenvectors are returned as columns of a matrix
* the eigenvector that belongs to the j-th eigenvalue in the list (eg. `values[j]`) is the j-th column (eg. `column(vectors, j)`).
* If the algorithm fails to converge, it will throw an error in that case, however, you may still find useful information
* in `err.values` and `err.vectors`.
*
* Syntax:
*
* math.eigs(x, [prec])
*
* Examples:
*
* const { eigs, multiply, column, transpose } = math
* const H = [[5, 2.3], [2.3, 1]]
* const ans = eigs(H) // returns {values: [E1,E2...sorted], vectors: [v1,v2.... corresponding vectors as columns]}
* const E = ans.values
* const U = ans.vectors
* multiply(H, column(U, 0)) // returns multiply(E[0], column(U, 0))
* const UTxHxU = multiply(transpose(U), H, U) // diagonalizes H
* E[0] == UTxHxU[0][0] // returns true
*
* See also:
*
* inv
*
* @param {Array | Matrix} x Matrix to be diagonalized
*
* @param {number | BigNumber} [prec] Precision, default value: 1e-15
* @return {{values: Array|Matrix, vectors: Array|Matrix}} Object containing an array of eigenvalues and a matrix with eigenvectors as columns.
*
*/
return typed('eigs', {
Array: function Array(x) {
var mat = matrix(x);
return computeValuesAndVectors(mat);
},
'Array, number|BigNumber': function ArrayNumberBigNumber(x, prec) {
var mat = matrix(x);
return computeValuesAndVectors(mat, prec);
},
Matrix: function Matrix(mat) {
var {
values,
vectors
} = computeValuesAndVectors(mat);
return {
values: matrix(values),
vectors: matrix(vectors)
};
},
'Matrix, number|BigNumber': function MatrixNumberBigNumber(mat, prec) {
var {
values,
vectors
} = computeValuesAndVectors(mat, prec);
return {
values: matrix(values),
vectors: matrix(vectors)
};
}
});
function computeValuesAndVectors(mat, prec) {
if (prec === undefined) {
prec = config.epsilon;
}
var size = mat.size();
if (size.length !== 2 || size[0] !== size[1]) {
throw new RangeError('Matrix must be square (size: ' + format(size) + ')');
}
var arr = mat.toArray();
var N = size[0];
if (isReal(arr, N, prec)) {
coerceReal(arr, N);
if (isSymmetric(arr, N, prec)) {
var _type = coerceTypes(mat, arr, N);
return doRealSymetric(arr, N, prec, _type);
}
}
var type = coerceTypes(mat, arr, N);
return doComplexEigs(arr, N, prec, type);
}
/** @return {boolean} */
function isSymmetric(arr, N, prec) {
for (var i = 0; i < N; i++) {
for (var j = i; j < N; j++) {
// TODO proper comparison of bignum and frac
if (larger(bignumber(abs(subtract(arr[i][j], arr[j][i]))), prec)) {
return false;
}
}
}
return true;
}
/** @return {boolean} */
function isReal(arr, N, prec) {
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
// TODO proper comparison of bignum and frac
if (larger(bignumber(abs(im(arr[i][j]))), prec)) {
return false;
}
}
}
return true;
}
function coerceReal(arr, N) {
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
arr[i][j] = re(arr[i][j]);
}
}
}
/** @return {'number' | 'BigNumber' | 'Complex'} */
function coerceTypes(mat, arr, N) {
/** @type {string} */
var type = mat.datatype();
if (type === 'number' || type === 'BigNumber' || type === 'Complex') {
return type;
}
var hasNumber = false;
var hasBig = false;
var hasComplex = false;
for (var i = 0; i < N; i++) {
for (var j = 0; j < N; j++) {
var el = arr[i][j];
if (isNumber(el) || isFraction(el)) {
hasNumber = true;
} else if (isBigNumber(el)) {
hasBig = true;
} else if (isComplex(el)) {
hasComplex = true;
} else {
throw TypeError('Unsupported type in Matrix: ' + typeOf(el));
}
}
}
if (hasBig && hasComplex) {
console.warn('Complex BigNumbers not supported, this operation will lose precission.');
}
if (hasComplex) {
for (var _i = 0; _i < N; _i++) {
for (var _j = 0; _j < N; _j++) {
arr[_i][_j] = complex(arr[_i][_j]);
}
}
return 'Complex';
}
if (hasBig) {
for (var _i2 = 0; _i2 < N; _i2++) {
for (var _j2 = 0; _j2 < N; _j2++) {
arr[_i2][_j2] = bignumber(arr[_i2][_j2]);
}
}
return 'BigNumber';
}
if (hasNumber) {
for (var _i3 = 0; _i3 < N; _i3++) {
for (var _j3 = 0; _j3 < N; _j3++) {
arr[_i3][_j3] = number(arr[_i3][_j3]);
}
}
return 'number';
} else {
throw TypeError('Matrix contains unsupported types only.');
}
}
});