77 lines
2.3 KiB
Markdown
77 lines
2.3 KiB
Markdown
|
<!-- Note: This file is automatically generated from source code comments. Changes made in this file will be overridden. -->
|
||
|
|
||
|
# Function std
|
||
|
|
||
|
Compute the standard deviation of a matrix or a list with values.
|
||
|
The standard deviations is defined as the square root of the variance:
|
||
|
`std(A) = sqrt(variance(A))`.
|
||
|
In case of a (multi dimensional) array or matrix, the standard deviation
|
||
|
over all elements will be calculated by default, unless an axis is specified
|
||
|
in which case the standard deviation will be computed along that axis.
|
||
|
|
||
|
Additionally, it is possible to compute the standard deviation along the rows
|
||
|
or columns of a matrix by specifying the dimension as the second argument.
|
||
|
|
||
|
Optionally, the type of normalization can be specified as the final
|
||
|
parameter. The parameter `normalization` can be one of the following values:
|
||
|
|
||
|
- 'unbiased' (default) The sum of squared errors is divided by (n - 1)
|
||
|
- 'uncorrected' The sum of squared errors is divided by n
|
||
|
- 'biased' The sum of squared errors is divided by (n + 1)
|
||
|
|
||
|
|
||
|
## Syntax
|
||
|
|
||
|
```js
|
||
|
math.std(a, b, c, ...)
|
||
|
math.std(A)
|
||
|
math.std(A, normalization)
|
||
|
math.std(A, dimension)
|
||
|
math.std(A, dimension, normalization)
|
||
|
```
|
||
|
|
||
|
### Parameters
|
||
|
|
||
|
Parameter | Type | Description
|
||
|
--------- | ---- | -----------
|
||
|
`array` | Array | Matrix | A single matrix or or multiple scalar values
|
||
|
`normalization` | string | Determines how to normalize the variance. Choose 'unbiased' (default), 'uncorrected', or 'biased'. Default value: 'unbiased'.
|
||
|
|
||
|
### Returns
|
||
|
|
||
|
Type | Description
|
||
|
---- | -----------
|
||
|
* | The standard deviation
|
||
|
|
||
|
|
||
|
### Throws
|
||
|
|
||
|
Type | Description
|
||
|
---- | -----------
|
||
|
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
```js
|
||
|
math.std(2, 4, 6) // returns 2
|
||
|
math.std([2, 4, 6, 8]) // returns 2.581988897471611
|
||
|
math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
|
||
|
math.std([2, 4, 6, 8], 'biased') // returns 2
|
||
|
|
||
|
math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707
|
||
|
math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
|
||
|
math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2]
|
||
|
math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
|
||
|
```
|
||
|
|
||
|
|
||
|
## See also
|
||
|
|
||
|
[mean](mean.md),
|
||
|
[median](median.md),
|
||
|
[max](max.md),
|
||
|
[min](min.md),
|
||
|
[prod](prod.md),
|
||
|
[sum](sum.md),
|
||
|
[variance](variance.md)
|