203 lines
5.6 KiB
JavaScript
203 lines
5.6 KiB
JavaScript
|
import { isMatrix } from '../../utils/is.js';
|
||
|
import { arraySize } from '../../utils/array.js';
|
||
|
import { factory } from '../../utils/factory.js';
|
||
|
import { format } from '../../utils/string.js';
|
||
|
var name = 'inv';
|
||
|
var dependencies = ['typed', 'matrix', 'divideScalar', 'addScalar', 'multiply', 'unaryMinus', 'det', 'identity', 'abs'];
|
||
|
export var createInv = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
|
var {
|
||
|
typed,
|
||
|
matrix,
|
||
|
divideScalar,
|
||
|
addScalar,
|
||
|
multiply,
|
||
|
unaryMinus,
|
||
|
det,
|
||
|
identity,
|
||
|
abs
|
||
|
} = _ref;
|
||
|
|
||
|
/**
|
||
|
* Calculate the inverse of a square matrix.
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.inv(x)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* math.inv([[1, 2], [3, 4]]) // returns [[-2, 1], [1.5, -0.5]]
|
||
|
* math.inv(4) // returns 0.25
|
||
|
* 1 / 4 // returns 0.25
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* det, transpose
|
||
|
*
|
||
|
* @param {number | Complex | Array | Matrix} x Matrix to be inversed
|
||
|
* @return {number | Complex | Array | Matrix} The inverse of `x`.
|
||
|
*/
|
||
|
return typed(name, {
|
||
|
'Array | Matrix': function ArrayMatrix(x) {
|
||
|
var size = isMatrix(x) ? x.size() : arraySize(x);
|
||
|
|
||
|
switch (size.length) {
|
||
|
case 1:
|
||
|
// vector
|
||
|
if (size[0] === 1) {
|
||
|
if (isMatrix(x)) {
|
||
|
return matrix([divideScalar(1, x.valueOf()[0])]);
|
||
|
} else {
|
||
|
return [divideScalar(1, x[0])];
|
||
|
}
|
||
|
} else {
|
||
|
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
|
||
|
}
|
||
|
|
||
|
case 2:
|
||
|
// two dimensional array
|
||
|
{
|
||
|
var rows = size[0];
|
||
|
var cols = size[1];
|
||
|
|
||
|
if (rows === cols) {
|
||
|
if (isMatrix(x)) {
|
||
|
return matrix(_inv(x.valueOf(), rows, cols), x.storage());
|
||
|
} else {
|
||
|
// return an Array
|
||
|
return _inv(x, rows, cols);
|
||
|
}
|
||
|
} else {
|
||
|
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
|
||
|
}
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
// multi dimensional array
|
||
|
throw new RangeError('Matrix must be two dimensional ' + '(size: ' + format(size) + ')');
|
||
|
}
|
||
|
},
|
||
|
any: function any(x) {
|
||
|
// scalar
|
||
|
return divideScalar(1, x); // FIXME: create a BigNumber one when configured for bignumbers
|
||
|
}
|
||
|
});
|
||
|
/**
|
||
|
* Calculate the inverse of a square matrix
|
||
|
* @param {Array[]} mat A square matrix
|
||
|
* @param {number} rows Number of rows
|
||
|
* @param {number} cols Number of columns, must equal rows
|
||
|
* @return {Array[]} inv Inverse matrix
|
||
|
* @private
|
||
|
*/
|
||
|
|
||
|
function _inv(mat, rows, cols) {
|
||
|
var r, s, f, value, temp;
|
||
|
|
||
|
if (rows === 1) {
|
||
|
// this is a 1 x 1 matrix
|
||
|
value = mat[0][0];
|
||
|
|
||
|
if (value === 0) {
|
||
|
throw Error('Cannot calculate inverse, determinant is zero');
|
||
|
}
|
||
|
|
||
|
return [[divideScalar(1, value)]];
|
||
|
} else if (rows === 2) {
|
||
|
// this is a 2 x 2 matrix
|
||
|
var d = det(mat);
|
||
|
|
||
|
if (d === 0) {
|
||
|
throw Error('Cannot calculate inverse, determinant is zero');
|
||
|
}
|
||
|
|
||
|
return [[divideScalar(mat[1][1], d), divideScalar(unaryMinus(mat[0][1]), d)], [divideScalar(unaryMinus(mat[1][0]), d), divideScalar(mat[0][0], d)]];
|
||
|
} else {
|
||
|
// this is a matrix of 3 x 3 or larger
|
||
|
// calculate inverse using gauss-jordan elimination
|
||
|
// https://en.wikipedia.org/wiki/Gaussian_elimination
|
||
|
// http://mathworld.wolfram.com/MatrixInverse.html
|
||
|
// http://math.uww.edu/~mcfarlat/inverse.htm
|
||
|
// make a copy of the matrix (only the arrays, not of the elements)
|
||
|
var A = mat.concat();
|
||
|
|
||
|
for (r = 0; r < rows; r++) {
|
||
|
A[r] = A[r].concat();
|
||
|
} // create an identity matrix which in the end will contain the
|
||
|
// matrix inverse
|
||
|
|
||
|
|
||
|
var B = identity(rows).valueOf(); // loop over all columns, and perform row reductions
|
||
|
|
||
|
for (var c = 0; c < cols; c++) {
|
||
|
// Pivoting: Swap row c with row r, where row r contains the largest element A[r][c]
|
||
|
var ABig = abs(A[c][c]);
|
||
|
var rBig = c;
|
||
|
r = c + 1;
|
||
|
|
||
|
while (r < rows) {
|
||
|
if (abs(A[r][c]) > ABig) {
|
||
|
ABig = abs(A[r][c]);
|
||
|
rBig = r;
|
||
|
}
|
||
|
|
||
|
r++;
|
||
|
}
|
||
|
|
||
|
if (ABig === 0) {
|
||
|
throw Error('Cannot calculate inverse, determinant is zero');
|
||
|
}
|
||
|
|
||
|
r = rBig;
|
||
|
|
||
|
if (r !== c) {
|
||
|
temp = A[c];
|
||
|
A[c] = A[r];
|
||
|
A[r] = temp;
|
||
|
temp = B[c];
|
||
|
B[c] = B[r];
|
||
|
B[r] = temp;
|
||
|
} // eliminate non-zero values on the other rows at column c
|
||
|
|
||
|
|
||
|
var Ac = A[c];
|
||
|
var Bc = B[c];
|
||
|
|
||
|
for (r = 0; r < rows; r++) {
|
||
|
var Ar = A[r];
|
||
|
var Br = B[r];
|
||
|
|
||
|
if (r !== c) {
|
||
|
// eliminate value at column c and row r
|
||
|
if (Ar[c] !== 0) {
|
||
|
f = divideScalar(unaryMinus(Ar[c]), Ac[c]); // add (f * row c) to row r to eliminate the value
|
||
|
// at column c
|
||
|
|
||
|
for (s = c; s < cols; s++) {
|
||
|
Ar[s] = addScalar(Ar[s], multiply(f, Ac[s]));
|
||
|
}
|
||
|
|
||
|
for (s = 0; s < cols; s++) {
|
||
|
Br[s] = addScalar(Br[s], multiply(f, Bc[s]));
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// normalize value at Acc to 1,
|
||
|
// divide each value on row r with the value at Acc
|
||
|
f = Ac[c];
|
||
|
|
||
|
for (s = c; s < cols; s++) {
|
||
|
Ar[s] = divideScalar(Ar[s], f);
|
||
|
}
|
||
|
|
||
|
for (s = 0; s < cols; s++) {
|
||
|
Br[s] = divideScalar(Br[s], f);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return B;
|
||
|
}
|
||
|
}
|
||
|
});
|