simple-squiggle/node_modules/mathjs/lib/esm/function/matrix/inv.js

203 lines
5.6 KiB
JavaScript
Raw Normal View History

import { isMatrix } from '../../utils/is.js';
import { arraySize } from '../../utils/array.js';
import { factory } from '../../utils/factory.js';
import { format } from '../../utils/string.js';
var name = 'inv';
var dependencies = ['typed', 'matrix', 'divideScalar', 'addScalar', 'multiply', 'unaryMinus', 'det', 'identity', 'abs'];
export var createInv = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
divideScalar,
addScalar,
multiply,
unaryMinus,
det,
identity,
abs
} = _ref;
/**
* Calculate the inverse of a square matrix.
*
* Syntax:
*
* math.inv(x)
*
* Examples:
*
* math.inv([[1, 2], [3, 4]]) // returns [[-2, 1], [1.5, -0.5]]
* math.inv(4) // returns 0.25
* 1 / 4 // returns 0.25
*
* See also:
*
* det, transpose
*
* @param {number | Complex | Array | Matrix} x Matrix to be inversed
* @return {number | Complex | Array | Matrix} The inverse of `x`.
*/
return typed(name, {
'Array | Matrix': function ArrayMatrix(x) {
var size = isMatrix(x) ? x.size() : arraySize(x);
switch (size.length) {
case 1:
// vector
if (size[0] === 1) {
if (isMatrix(x)) {
return matrix([divideScalar(1, x.valueOf()[0])]);
} else {
return [divideScalar(1, x[0])];
}
} else {
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
}
case 2:
// two dimensional array
{
var rows = size[0];
var cols = size[1];
if (rows === cols) {
if (isMatrix(x)) {
return matrix(_inv(x.valueOf(), rows, cols), x.storage());
} else {
// return an Array
return _inv(x, rows, cols);
}
} else {
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
}
}
default:
// multi dimensional array
throw new RangeError('Matrix must be two dimensional ' + '(size: ' + format(size) + ')');
}
},
any: function any(x) {
// scalar
return divideScalar(1, x); // FIXME: create a BigNumber one when configured for bignumbers
}
});
/**
* Calculate the inverse of a square matrix
* @param {Array[]} mat A square matrix
* @param {number} rows Number of rows
* @param {number} cols Number of columns, must equal rows
* @return {Array[]} inv Inverse matrix
* @private
*/
function _inv(mat, rows, cols) {
var r, s, f, value, temp;
if (rows === 1) {
// this is a 1 x 1 matrix
value = mat[0][0];
if (value === 0) {
throw Error('Cannot calculate inverse, determinant is zero');
}
return [[divideScalar(1, value)]];
} else if (rows === 2) {
// this is a 2 x 2 matrix
var d = det(mat);
if (d === 0) {
throw Error('Cannot calculate inverse, determinant is zero');
}
return [[divideScalar(mat[1][1], d), divideScalar(unaryMinus(mat[0][1]), d)], [divideScalar(unaryMinus(mat[1][0]), d), divideScalar(mat[0][0], d)]];
} else {
// this is a matrix of 3 x 3 or larger
// calculate inverse using gauss-jordan elimination
// https://en.wikipedia.org/wiki/Gaussian_elimination
// http://mathworld.wolfram.com/MatrixInverse.html
// http://math.uww.edu/~mcfarlat/inverse.htm
// make a copy of the matrix (only the arrays, not of the elements)
var A = mat.concat();
for (r = 0; r < rows; r++) {
A[r] = A[r].concat();
} // create an identity matrix which in the end will contain the
// matrix inverse
var B = identity(rows).valueOf(); // loop over all columns, and perform row reductions
for (var c = 0; c < cols; c++) {
// Pivoting: Swap row c with row r, where row r contains the largest element A[r][c]
var ABig = abs(A[c][c]);
var rBig = c;
r = c + 1;
while (r < rows) {
if (abs(A[r][c]) > ABig) {
ABig = abs(A[r][c]);
rBig = r;
}
r++;
}
if (ABig === 0) {
throw Error('Cannot calculate inverse, determinant is zero');
}
r = rBig;
if (r !== c) {
temp = A[c];
A[c] = A[r];
A[r] = temp;
temp = B[c];
B[c] = B[r];
B[r] = temp;
} // eliminate non-zero values on the other rows at column c
var Ac = A[c];
var Bc = B[c];
for (r = 0; r < rows; r++) {
var Ar = A[r];
var Br = B[r];
if (r !== c) {
// eliminate value at column c and row r
if (Ar[c] !== 0) {
f = divideScalar(unaryMinus(Ar[c]), Ac[c]); // add (f * row c) to row r to eliminate the value
// at column c
for (s = c; s < cols; s++) {
Ar[s] = addScalar(Ar[s], multiply(f, Ac[s]));
}
for (s = 0; s < cols; s++) {
Br[s] = addScalar(Br[s], multiply(f, Bc[s]));
}
}
} else {
// normalize value at Acc to 1,
// divide each value on row r with the value at Acc
f = Ac[c];
for (s = c; s < cols; s++) {
Ar[s] = divideScalar(Ar[s], f);
}
for (s = 0; s < cols; s++) {
Br[s] = divideScalar(Br[s], f);
}
}
}
}
return B;
}
}
});