100 lines
2.5 KiB
JavaScript
100 lines
2.5 KiB
JavaScript
|
import { csCumsum } from './csCumsum.js';
|
||
|
import { factory } from '../../../utils/factory.js';
|
||
|
var name = 'csSymperm';
|
||
|
var dependencies = ['conj', 'SparseMatrix'];
|
||
|
export var createCsSymperm = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
|
var {
|
||
|
conj,
|
||
|
SparseMatrix
|
||
|
} = _ref;
|
||
|
|
||
|
/**
|
||
|
* Computes the symmetric permutation of matrix A accessing only
|
||
|
* the upper triangular part of A.
|
||
|
*
|
||
|
* C = P * A * P'
|
||
|
*
|
||
|
* @param {Matrix} a The A matrix
|
||
|
* @param {Array} pinv The inverse of permutation vector
|
||
|
* @param {boolean} values Process matrix values (true)
|
||
|
*
|
||
|
* @return {Matrix} The C matrix, C = P * A * P'
|
||
|
*
|
||
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
||
|
*/
|
||
|
return function csSymperm(a, pinv, values) {
|
||
|
// A matrix arrays
|
||
|
var avalues = a._values;
|
||
|
var aindex = a._index;
|
||
|
var aptr = a._ptr;
|
||
|
var asize = a._size; // columns
|
||
|
|
||
|
var n = asize[1]; // C matrix arrays
|
||
|
|
||
|
var cvalues = values && avalues ? [] : null;
|
||
|
var cindex = []; // (nz)
|
||
|
|
||
|
var cptr = []; // (n + 1)
|
||
|
// variables
|
||
|
|
||
|
var i, i2, j, j2, p, p0, p1; // create workspace vector
|
||
|
|
||
|
var w = []; // (n)
|
||
|
// count entries in each column of C
|
||
|
|
||
|
for (j = 0; j < n; j++) {
|
||
|
// column j of A is column j2 of C
|
||
|
j2 = pinv ? pinv[j] : j; // loop values in column j
|
||
|
|
||
|
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
i = aindex[p]; // skip lower triangular part of A
|
||
|
|
||
|
if (i > j) {
|
||
|
continue;
|
||
|
} // row i of A is row i2 of C
|
||
|
|
||
|
|
||
|
i2 = pinv ? pinv[i] : i; // column count of C
|
||
|
|
||
|
w[Math.max(i2, j2)]++;
|
||
|
}
|
||
|
} // compute column pointers of C
|
||
|
|
||
|
|
||
|
csCumsum(cptr, w, n); // loop columns
|
||
|
|
||
|
for (j = 0; j < n; j++) {
|
||
|
// column j of A is column j2 of C
|
||
|
j2 = pinv ? pinv[j] : j; // loop values in column j
|
||
|
|
||
|
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
i = aindex[p]; // skip lower triangular part of A
|
||
|
|
||
|
if (i > j) {
|
||
|
continue;
|
||
|
} // row i of A is row i2 of C
|
||
|
|
||
|
|
||
|
i2 = pinv ? pinv[i] : i; // C index for column j2
|
||
|
|
||
|
var q = w[Math.max(i2, j2)]++; // update C index for entry q
|
||
|
|
||
|
cindex[q] = Math.min(i2, j2); // check we need to process values
|
||
|
|
||
|
if (cvalues) {
|
||
|
cvalues[q] = i2 <= j2 ? avalues[p] : conj(avalues[p]);
|
||
|
}
|
||
|
}
|
||
|
} // return C matrix
|
||
|
|
||
|
|
||
|
return new SparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [n, n]
|
||
|
});
|
||
|
};
|
||
|
});
|