feat: Fix Good Judgment flow, start writting the Insight Parser.
Note that the Insight Prediction parser is in fact not complete
This commit is contained in:
parent
cb6f9239bf
commit
494e8d74ad
|
@ -17,12 +17,19 @@ const annoyingPromptUrls = [
|
||||||
"https://www.gjopen.com/questions/1779-are-there-any-forecasting-tips-tricks-and-experiences-you-would-like-to-share-and-or-discuss-with-your-fellow-forecasters",
|
"https://www.gjopen.com/questions/1779-are-there-any-forecasting-tips-tricks-and-experiences-you-would-like-to-share-and-or-discuss-with-your-fellow-forecasters",
|
||||||
"https://www.gjopen.com/questions/2246-are-there-any-forecasting-tips-tricks-and-experiences-you-would-like-to-share-and-or-discuss-with-your-fellow-forecasters-2022-thread",
|
"https://www.gjopen.com/questions/2246-are-there-any-forecasting-tips-tricks-and-experiences-you-would-like-to-share-and-or-discuss-with-your-fellow-forecasters-2022-thread",
|
||||||
"https://www.gjopen.com/questions/2237-what-forecasting-questions-should-we-ask-what-questions-would-you-like-to-forecast-on-gjopen",
|
"https://www.gjopen.com/questions/2237-what-forecasting-questions-should-we-ask-what-questions-would-you-like-to-forecast-on-gjopen",
|
||||||
|
"https://www.gjopen.com/questions/2437-what-forecasting-questions-should-we-ask-what-questions-would-you-like-to-forecast-on-gjopen"
|
||||||
];
|
];
|
||||||
const DEBUG_MODE: "on" | "off" = "off"; // "on"
|
const DEBUG_MODE: "on" | "off" = "off"; // "on"
|
||||||
const id = () => 0;
|
const id = () => 0;
|
||||||
|
|
||||||
/* Support functions */
|
/* Support functions */
|
||||||
|
|
||||||
|
function cleanDescription(text: string) {
|
||||||
|
let md = toMarkdown(text);
|
||||||
|
let result = md.replaceAll("---", "-").replaceAll(" ", " ");
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
async function fetchPage(page: number, cookie: string) {
|
async function fetchPage(page: number, cookie: string) {
|
||||||
const response: string = await axios({
|
const response: string = await axios({
|
||||||
url: htmlEndPoint + page,
|
url: htmlEndPoint + page,
|
||||||
|
@ -40,82 +47,68 @@ async function fetchStats(questionUrl: string, cookie: string) {
|
||||||
url: questionUrl + "/stats",
|
url: questionUrl + "/stats",
|
||||||
method: "GET",
|
method: "GET",
|
||||||
headers: {
|
headers: {
|
||||||
|
"Content-Type": "text/html",
|
||||||
Cookie: cookie,
|
Cookie: cookie,
|
||||||
Referer: questionUrl,
|
Referer: questionUrl,
|
||||||
},
|
},
|
||||||
}).then((res) => res.data);
|
}).then((res) => res.data);
|
||||||
//console.log(response)
|
|
||||||
|
|
||||||
// Is binary?
|
if (response.includes("Sign up or sign in to forecast")) {
|
||||||
let isbinary = response.includes("binary?":true");
|
throw Error("Not logged in");
|
||||||
|
}
|
||||||
|
// Init
|
||||||
|
let options: FullQuestionOption[] = [];
|
||||||
|
|
||||||
let options: FetchedQuestion["options"] = [];
|
// Parse the embedded json
|
||||||
if (isbinary) {
|
let htmlElements = response.split("\n");
|
||||||
// Crowd percentage
|
let jsonLines = htmlElements.filter((element) =>
|
||||||
let htmlElements = response.split("\n");
|
element.includes("data-react-props")
|
||||||
let h3Element = htmlElements.filter((str) => str.includes("<h3>"))[0];
|
);
|
||||||
// console.log(h3Element)
|
let embeddedJsons = jsonLines.map((jsonLine, i) => {
|
||||||
let crowdpercentage = h3Element.split(">")[1].split("<")[0];
|
let innerJSONasHTML = jsonLine.split('data-react-props="')[1].split('"')[0];
|
||||||
let probability = Number(crowdpercentage.replace("%", "")) / 100;
|
let json = JSON.parse(innerJSONasHTML.replaceAll(""", '"'));
|
||||||
options.push(
|
return json;
|
||||||
{
|
});
|
||||||
name: "Yes",
|
let firstEmbeddedJson = embeddedJsons[0];
|
||||||
probability: probability,
|
let title = firstEmbeddedJson.question.name;
|
||||||
type: "PROBABILITY",
|
let description = cleanDescription(firstEmbeddedJson.question.description);
|
||||||
},
|
let comments_count = firstEmbeddedJson.question.comments_count;
|
||||||
{
|
let numforecasters = firstEmbeddedJson.question.predictors_count;
|
||||||
name: "No",
|
let numforecasts = firstEmbeddedJson.question.prediction_sets_count;
|
||||||
probability: +(1 - probability).toFixed(2), // avoids floating point shenanigans
|
let questionType = firstEmbeddedJson.question.type;
|
||||||
type: "PROBABILITY",
|
if (
|
||||||
}
|
questionType.includes("Binary") ||
|
||||||
);
|
questionType.includes("NonExclusiveOpinionPoolQuestion") ||
|
||||||
} else {
|
questionType.includes("Forecast::Question") ||
|
||||||
let optionsHtmlElement = "<table" + response.split("tbody")[1] + "table>";
|
!questionType.includes("Forecast::MultiTimePeriodQuestion")
|
||||||
let tablesAsJson = Tabletojson.convert(optionsHtmlElement);
|
) {
|
||||||
let firstTable = tablesAsJson[0];
|
options = firstEmbeddedJson.question.answers.map((answer: any) => ({
|
||||||
options = firstTable.map((element: any) => ({
|
name: answer.name,
|
||||||
name: element["0"],
|
probability: answer.normalized_probability,
|
||||||
probability: Number(element["1"].replace("%", "")) / 100,
|
|
||||||
type: "PROBABILITY",
|
type: "PROBABILITY",
|
||||||
}));
|
}));
|
||||||
//console.log(optionsHtmlElement)
|
if (options.length == 1 && options[0].name == "Yes") {
|
||||||
//console.log(options)
|
let probabilityNo =
|
||||||
|
options[0].probability > 1
|
||||||
|
? 1 - options[0].probability / 100
|
||||||
|
: 1 - options[0].probability;
|
||||||
|
options.push({
|
||||||
|
name: "No",
|
||||||
|
probability: probabilityNo,
|
||||||
|
type: "PROBABILITY",
|
||||||
|
});
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Description
|
|
||||||
let descriptionraw = response.split(
|
|
||||||
`<div id="question-background" class="collapse smb">`
|
|
||||||
)[1];
|
|
||||||
let descriptionprocessed1 = descriptionraw.split(`</div>`)[0];
|
|
||||||
let descriptionprocessed2 = toMarkdown(descriptionprocessed1);
|
|
||||||
let descriptionprocessed3 = descriptionprocessed2
|
|
||||||
.split("\n")
|
|
||||||
.filter((string) => !string.includes("Confused? Check our"))
|
|
||||||
.join("\n");
|
|
||||||
let description = descriptionprocessed3;
|
|
||||||
|
|
||||||
// Number of forecasts
|
|
||||||
let numforecasts = response
|
|
||||||
.split("prediction_sets_count":")[1]
|
|
||||||
.split(",")[0];
|
|
||||||
//console.log(numforecasts)
|
|
||||||
|
|
||||||
// Number of predictors
|
|
||||||
let numforecasters = response
|
|
||||||
.split("predictors_count":")[1]
|
|
||||||
.split(",")[0];
|
|
||||||
//console.log(numpredictors)
|
|
||||||
|
|
||||||
let result = {
|
let result = {
|
||||||
description,
|
description: description,
|
||||||
options,
|
options: options,
|
||||||
qualityindicators: {
|
qualityindicators: {
|
||||||
numforecasts: Number(numforecasts),
|
numforecasts: Number(numforecasts),
|
||||||
numforecasters: Number(numforecasters),
|
numforecasters: Number(numforecasters),
|
||||||
|
comments_count: Number(comments_count),
|
||||||
},
|
},
|
||||||
// this mismatches the code below, and needs to be fixed, but I'm doing typescript conversion and don't want to touch any logic for now
|
};
|
||||||
} as any;
|
// console.log(JSON.stringify(result, null, 4));
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -150,6 +143,7 @@ async function goodjudgmentopen_inner(cookie: string) {
|
||||||
let results = [];
|
let results = [];
|
||||||
let init = Date.now();
|
let init = Date.now();
|
||||||
// console.log("Downloading... This might take a couple of minutes. Results will be shown.")
|
// console.log("Downloading... This might take a couple of minutes. Results will be shown.")
|
||||||
|
console.log("Page #1")
|
||||||
while (!reachedEnd(response) && isSignedIn(response)) {
|
while (!reachedEnd(response) && isSignedIn(response)) {
|
||||||
let htmlLines = response.split("\n");
|
let htmlLines = response.split("\n");
|
||||||
DEBUG_MODE == "on" ? htmlLines.forEach((line) => console.log(line)) : id();
|
DEBUG_MODE == "on" ? htmlLines.forEach((line) => console.log(line)) : id();
|
||||||
|
@ -187,6 +181,8 @@ async function goodjudgmentopen_inner(cookie: string) {
|
||||||
if (j % 30 == 0 || DEBUG_MODE == "on") {
|
if (j % 30 == 0 || DEBUG_MODE == "on") {
|
||||||
console.log(`Page #${i}`);
|
console.log(`Page #${i}`);
|
||||||
console.log(question);
|
console.log(question);
|
||||||
|
}else{
|
||||||
|
console.log(question.title)
|
||||||
}
|
}
|
||||||
// console.log(question)
|
// console.log(question)
|
||||||
results.push(question);
|
results.push(question);
|
||||||
|
|
118
src/backend/platforms/insight.ts
Normal file
118
src/backend/platforms/insight.ts
Normal file
|
@ -0,0 +1,118 @@
|
||||||
|
/* Imports */
|
||||||
|
import axios from "axios";
|
||||||
|
|
||||||
|
import { FetchedQuestion, Platform } from ".";
|
||||||
|
|
||||||
|
/* Definitions */
|
||||||
|
const platformName = "insight";
|
||||||
|
const marketsEnpoint = "https://insightprediction.com/api/markets";
|
||||||
|
const getMarketEndpoint = (id: number) => `https://insightprediction.com/api/markets/${id}`
|
||||||
|
|
||||||
|
/* Support functions */
|
||||||
|
|
||||||
|
async function fetchQuestionStats(bearer: string, marketId: number){
|
||||||
|
const response = await axios({
|
||||||
|
url: getMarketEndpoint(marketId),
|
||||||
|
method: "GET",
|
||||||
|
headers: {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Accept": "application/json",
|
||||||
|
"Authorization": `Bearer ${bearer}`,
|
||||||
|
},
|
||||||
|
}).then((res) => res.data);
|
||||||
|
// console.log(response)
|
||||||
|
return response;
|
||||||
|
}
|
||||||
|
|
||||||
|
async function fetchPage(bearer: string, pageNum: number) {
|
||||||
|
const response = await axios({
|
||||||
|
url: `${marketsEnpoint}?page=${pageNum}`,
|
||||||
|
method: "GET",
|
||||||
|
headers: {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Accept": "application/json",
|
||||||
|
"Authorization": `Bearer ${bearer}`,
|
||||||
|
},
|
||||||
|
}).then((res) => res.data);
|
||||||
|
// console.log(response)
|
||||||
|
return response;
|
||||||
|
}
|
||||||
|
|
||||||
|
async function fetchData(bearer: string){
|
||||||
|
let pageNum = 1
|
||||||
|
let reachedEnd = false
|
||||||
|
let results = []
|
||||||
|
while(!reachedEnd){
|
||||||
|
let newPage = await fetchPage(bearer, pageNum)
|
||||||
|
let newPageData = newPage.data
|
||||||
|
|
||||||
|
let marketsWithStats = newPageData.map(marketData => {
|
||||||
|
let marketStats = fetchQuestionStats(bearer, marketData.id)
|
||||||
|
return ({...marketStats, ...marketData})
|
||||||
|
})
|
||||||
|
|
||||||
|
console.log(`Page = #${pageNum}`)
|
||||||
|
// console.log(newPageData)
|
||||||
|
console.log(marketsWithStats)
|
||||||
|
results.push(...marketsWithStats)
|
||||||
|
|
||||||
|
let newPagination = newPage.meta.pagination
|
||||||
|
if(newPagination.total_pages == pageNum ){
|
||||||
|
reachedEnd = true
|
||||||
|
}else{
|
||||||
|
pageNum = pageNum + 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function processPredictions(predictions: any[]) {
|
||||||
|
let results = await predictions.map((prediction) => {
|
||||||
|
const id = `${platformName}-${prediction.id}`;
|
||||||
|
const probability = prediction.probability;
|
||||||
|
const options: FetchedQuestion["options"] = [
|
||||||
|
{
|
||||||
|
name: "Yes",
|
||||||
|
probability: probability,
|
||||||
|
type: "PROBABILITY",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "No",
|
||||||
|
probability: 1 - probability,
|
||||||
|
type: "PROBABILITY",
|
||||||
|
},
|
||||||
|
];
|
||||||
|
const result: FetchedQuestion = {
|
||||||
|
id,
|
||||||
|
title: prediction.title,
|
||||||
|
url: "https://example.com",
|
||||||
|
description: prediction.description,
|
||||||
|
options,
|
||||||
|
qualityindicators: {
|
||||||
|
// other: prediction.otherx,
|
||||||
|
// indicators: prediction.indicatorx,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
return result;
|
||||||
|
});
|
||||||
|
return results; //resultsProcessed
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Body */
|
||||||
|
|
||||||
|
export const insight: Platform = {
|
||||||
|
name: platformName,
|
||||||
|
label: "Insight Prediction",
|
||||||
|
color: "#ff0000",
|
||||||
|
version: "v0",
|
||||||
|
async fetcher() {
|
||||||
|
let bearer = process.env.INSIGHT_BEARER;
|
||||||
|
let pageNum = 1
|
||||||
|
let data = await fetchData(bearer);
|
||||||
|
console.log(data)
|
||||||
|
let results = [] // await processPredictions(data); // somehow needed
|
||||||
|
return results;
|
||||||
|
},
|
||||||
|
calculateStars(data) {
|
||||||
|
return 2;
|
||||||
|
},
|
||||||
|
};
|
|
@ -7,6 +7,7 @@ import { goodjudgmentopen } from "./goodjudgmentopen";
|
||||||
import { guesstimate } from "./guesstimate";
|
import { guesstimate } from "./guesstimate";
|
||||||
import { Platform, PlatformConfig } from "./index";
|
import { Platform, PlatformConfig } from "./index";
|
||||||
import { infer } from "./infer";
|
import { infer } from "./infer";
|
||||||
|
import { insight } from "./insight";
|
||||||
import { kalshi } from "./kalshi";
|
import { kalshi } from "./kalshi";
|
||||||
import { manifold } from "./manifold";
|
import { manifold } from "./manifold";
|
||||||
import { metaculus } from "./metaculus";
|
import { metaculus } from "./metaculus";
|
||||||
|
@ -28,6 +29,7 @@ export const getPlatforms = (): Platform<string>[] => {
|
||||||
goodjudgmentopen,
|
goodjudgmentopen,
|
||||||
guesstimate,
|
guesstimate,
|
||||||
infer,
|
infer,
|
||||||
|
insight,
|
||||||
kalshi,
|
kalshi,
|
||||||
manifold,
|
manifold,
|
||||||
metaculus,
|
metaculus,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user