time-to-botec/js/node_modules/@stdlib/random/base/mt19937/src/main.c
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

846 lines
25 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C code and copyright notice are from the [source implementation]{@link http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c}. The implementation has been modified according to the styles and conventions of this project.
*
* ```text
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ```
*/
// Note: keep project includes in alphabetical order...
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "stdlib/random/base.h"
#include "stdlib/random/base/mt19937.h"
// Forward declarations:
static inline int8_t next( struct BasePRNGObject *obj, uint64_t *out );
static inline int8_t normalized( struct BasePRNGObject *obj, double *out );
static inline void mt19937_free( struct BasePRNGObject *obj );
static inline void create_state( uint32_t *state, const int32_t N, const uint32_t s );
static inline void init_state( uint32_t *state, const int32_t N, const uint32_t *seed, const int64_t M );
static inline void twist( uint32_t *state, const int32_t N );
// Define the size of the state array (see refs):
static const int32_t N = 624;
// Define a (magic) constant used for indexing into the state array:
static const int32_t M = 397;
// Define an initial state (magic) constant: 19650218 => 00000001001010111101011010101010
static const uint32_t SEED_ARRAY_INIT_STATE = 19650218;
// Define a mask for the most significant `w-r` bits, where `w` is the word size (32 bits) and `r` is the separation point of one word (see refs): 2147483648 => 0x80000000 => 10000000000000000000000000000000
static const uint32_t UPPER_MASK = 0x80000000;
// Define a mask for the least significant `r` bits (see refs): 2147483647 => 0x7fffffff => 01111111111111111111111111111111
static const uint32_t LOWER_MASK = 0x7fffffff;
// Define a multiplier (see Knuth TAOCP Vol2. 3rd Ed. P.106): 1812433253 => 01101100000001111000100101100101
static const uint32_t KNUTH_MULTIPLIER = 1812433253;
// Define a (magic) multiplier: 1664525 => 00000000000110010110011000001101
static const uint32_t MAGIC_MULTIPLIER_1 = 1664525;
// Define a (magic) multiplier: 1566083941 => 01011101010110001000101101100101
static const uint32_t MAGIC_MULTIPLIER_2 = 1566083941;
// Define a tempering coefficient: 2636928640 => 0x9d2c5680 => 10011101001011000101011010000000
static const uint32_t TEMPERING_COEFFICIENT_1 = 0x9d2c5680;
// Define a tempering coefficient: 4022730752 => 0xefc60000 => 11101111110001100000000000000000
static const uint32_t TEMPERING_COEFFICIENT_2 = 0xefc60000;
// Define a constant vector `a` (see refs): 2567483615 => 0x9908b0df => 10011001000010001011000011011111
static const uint32_t MATRIX_A = 0x9908b0df;
// MAG01[x] = x * MATRIX_A; for x = {0,1}
static const uint32_t MAG01[2] = { 0x0, MATRIX_A };
// Define the maximum unsigned 32-bit integer: 4294967295 => 11111111111111111111111111111111
static const uint32_t MAX_UINT32 = 4294967295;
// Define the maximum "safe" double-precision floating-point integer:
static const double FLOAT64_MAX_SAFE_INTEGER = 9007199254740991.0;
// Define a normalization constant when generating double-precision floating-point numbers: 2^53 => 9007199254740992
static const double FLOAT64_NORMALIZATION_CONSTANT = 1.0 / ( FLOAT64_MAX_SAFE_INTEGER+1.0 );
// 2^26: 67108864
static const double TWO_26 = 67108864.0;
// 2^32: 2147483648 => 0x80000000 => 10000000000000000000000000000000
static const uint32_t TWO_32 = 0x80000000;
// 1 (as a 32-bit unsigned integer): 1 => 0x1 => 00000000000000000000000000000001
static const uint32_t ONE = 0x1;
// Define the maximum normalized pseudorandom double-precision floating-point number: ( (((2^32-1)>>>5)*2^26)+( (2^32-1)>>>6) ) / 2^53
static const double MAX_NORMALIZED = FLOAT64_MAX_SAFE_INTEGER * FLOAT64_NORMALIZATION_CONSTANT;
/**
* MT19937 PRNG.
*
* @private
*/
static const struct BasePRNG mt19937_prng = {
"mt19937", // name
(uint64_t)1, // min
(uint64_t)MAX_UINT32, // max: (2^{32}-1)
0.0, // min (normalized)
MAX_NORMALIZED, // max (normalized): (2^{53}-1)/2^{53}
sizeof( stdlib_base_random_mt19937_state_t ), // state_size
&next, // next()
&normalized, // normalized()
&mt19937_free // free()
};
/**
* Returns a pseudorandom integer.
*
* ## Notes
*
* - The function returns `-1` if unable to generate a pseudorandom integer and `0` otherwise.
*
* ## References
*
* - Matsumoto, Makoto, and Takuji Nishimura. 1998. "Mersenne Twister: A 623-dimensionally Equidistributed Uniform Pseudo-random Number Generator." _ACM Transactions on Modeling and Computer Simulation_ 8 (1). New York, NY, USA: ACM: 330. doi:[10.1145/272991.272995][@matsumoto:1998a].
*
* @private
* @param obj PRNG object
* @param out output address
* @return status code
*/
static inline int8_t next( struct BasePRNGObject *obj, uint64_t *out ) {
stdlib_base_random_mt19937_state_t *so;
uint32_t *state;
uint32_t r;
int32_t i;
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return -1;
}
// Retrieve the state object:
so = (stdlib_base_random_mt19937_state_t *)( obj->state );
// Retrieve the current state and current state index:
state = so->state;
i = so->i;
// Determine if we need to update our internal state array:
if ( i >= N ) {
twist( so->state, N );
i = 0;
}
// Get the next state value:
r = so->state[ i ];
// Update the state index:
so->i = i + 1;
// Tempering transform to compensate for the reduced dimensionality of equidistribution:
r ^= r >> 11;
r ^= ( r << 7 ) & TEMPERING_COEFFICIENT_1;
r ^= ( r << 15 ) & TEMPERING_COEFFICIENT_2;
r ^= r >> 18;
// Set the output value:
*out = (uint64_t)( r );
return 0;
}
/**
* Returns a pseudorandom double-precision floating-point number on the interval `[0,1)`.
*
* ## Method
*
* - When generating normalized double-precision floating-point numbers, we first generate two pseudorandom integers \\( x \\) and \\( y \\) on the interval \\( [1,2^{32}-1) \\) for a combined \\( 64 \\) random bits.
*
* - We would like \\( 53 \\) random bits to generate a 53-bit precision integer and, thus, want to discard \\( 11 \\) of the generated bits.
*
* - We do so by discarding \\( 5 \\) bits from \\( x \\) and \\( 6 \\) bits from \\( y \\).
*
* - Accordingly, \\( x \\) contains \\( 27 \\) random bits, which are subsequently shifted left \\( 26 \\) bits (multiplied by \\( 2^{26} \\), and \\( y \\) contains \\( 26 \\) random bits to fill in the lower \\( 26 \\) bits. When summed, they combine to comprise \\( 53 \\) random bits of a double-precision floating-point integer.
*
* - As an example, suppose, for the sake of argument, the 32-bit PRNG generates the maximum unsigned 32-bit integer \\( 2^{32}-1 \\) twice in a row. Then,
*
* ```c
* uint32_t x = 4294967295 >> 5; // 00000111111111111111111111111111
* uint32_t y = 4294967295 >> 6; // 00000011111111111111111111111111
* ```
*
* Multiplying \\( x \\) by \\( 2^{26} \\) returns \\( 9007199187632128 \\), which, in binary, is
*
* ```binarystring
* 0 10000110011 11111111111111111111 11111100000000000000000000000000
* ```
*
* Adding \\( y \\) yields \\( 9007199254740991 \\) (the maximum "safe" double-precision floating-point integer value), which, in binary, is
*
* ```binarystring
* 0 10000110011 11111111111111111111 11111111111111111111111111111111
* ```
*
* - Similarly, suppose the 32-bit PRNG generates the following values
*
* ```c
* uint32_t x = 1 >> 5; // 0 => 00000000000000000000000000000000
* uint32_t y = 64 >> 6; // 1 => 00000000000000000000000000000001
* ```
*
* Multiplying \\( x \\) by \\( 2^{26} \\) returns \\( 0 \\), which, in binary, is
*
* ```binarystring
* 0 00000000000 00000000000000000000 00000000000000000000000000000000
* ```
*
* Adding \\( y \\) yields \\( 1 \\), which, in binary, is
*
* ```binarystring
* 0 01111111111 00000000000000000000 00000000000000000000000000000000
* ```
*
* - As different combinations of \\( x \\) and \\( y \\) are generated, different combinations of double-precision floating-point exponent and significand bits will be toggled, thus generating pseudorandom double-precision floating-point numbers.
*
* ## Notes
*
* - The function returns `-1` if unable to generate a pseudorandom number and `0` otherwise.
*
* ## References
*
* - Harase, Shin. 2017. "Conversion of Mersenne Twister to double-precision floating-point numbers." _ArXiv_ abs/1708.06018 (September). <https://arxiv.org/abs/1708.06018>.
*
* @private
* @param obj PRNG object
* @param out output address
* @return status code
*/
static inline int8_t normalized( struct BasePRNGObject *obj, double *out ) {
uint64_t x;
uint64_t y;
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return -1;
}
next( obj, &x);
x >>= 5;
next( obj, &y );
y >>= 6;
// Note: casting `x` and `y` to doubles here is fine, as neither will ever exceed the maximum "safe" double-precision floating-point number:
*out = ( ((double)x*TWO_26)+(double)y ) * FLOAT64_NORMALIZATION_CONSTANT;
return 0;
}
/**
* Frees a PRNG's allocated memory.
*
* @private
* @param obj PRNG object
*/
static inline void mt19937_free( struct BasePRNGObject *obj ) {
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return;
}
stdlib_base_random_mt19937_state_t *state = (stdlib_base_random_mt19937_state_t *)( obj->state );
free( state->seed );
free( obj->state );
free( obj );
}
/**
* Returns an initial PRNG state.
*
* @private
* @param state pointer to state array
* @param N state array length
* @param s seed
*/
static inline void create_state( uint32_t *state, const int32_t N, const uint32_t s ) {
int32_t i;
// Set the first element of the state array to the provided seed:
state[ 0 ] = s;
// Initialize the remaining state array elements:
for ( i = 1; i < N; i++ ) {
state[ i ] = (KNUTH_MULTIPLIER * (state[i-1] ^ (state[i-1]>>30)) + i);
}
}
/**
* Initializes a PRNG state array according to a seed array.
*
* @private
* @param state pointer to state array
* @param N state array length
* @param seed pointer to seed array
* @param M seed array length
*/
static inline void init_state( uint32_t *state, const int32_t N, const uint32_t *seed, const int64_t M ) {
int32_t i;
int64_t j;
int64_t k;
i = 1;
j = 0;
k = ( N > M ) ? N : M;
for ( ; k > 0; k-- ) {
state[ i ] = (state[i]^((state[i-1]^(state[i-1]>>30))*MAGIC_MULTIPLIER_1)) + seed[j] + j;
i += 1;
j += 1;
if ( i >= N ) {
state[ 0 ] = state[ N-1 ];
i = 1;
}
if ( j >= M ) {
j = 0;
}
}
for ( k = N-1; k > 0; k-- ) {
state[ i ] = (state[i]^((state[i-1]^(state[i-1]>>30))*MAGIC_MULTIPLIER_2)) - i;
i += 1;
if ( i >= N ) {
state[ 0 ] = state[ N-1 ];
i = 1;
}
}
// Ensure a non-zero initial state array:
state[ 0 ] = TWO_32; // MSB (most significant bit) is 1
}
/**
* Updates a PRNG's internal state by generating the next `N` words.
*
* @private
* @param state pointer to a PRNG's internal state array
* @param N state array length
*/
static inline void twist( uint32_t *state, const int32_t N ) {
uint32_t w;
int32_t i;
int32_t j;
int32_t k;
k = N - M;
for ( i = 0; i < k; i++ ) {
w = ( state[i]&UPPER_MASK ) | ( state[i+1]&LOWER_MASK );
state[ i ] = state[ i+M ] ^ ( w>>1 ) ^ MAG01[ w&ONE ];
}
j = N - 1;
for ( ; i < j; i++ ) {
w = ( state[i]&UPPER_MASK ) | ( state[i+1]&LOWER_MASK );
state[ i ] = state[ i-k ] ^ ( w>>1 ) ^ MAG01[ w&ONE ];
}
w = ( state[j]&UPPER_MASK ) | ( state[0]&LOWER_MASK );
state[ j ] = state[ M-1 ] ^ ( w>>1 ) ^ MAG01[ w&ONE ];
}
/**
* Returns a pointer to a dynamically allocated PRNG.
*
* ## Notes
*
* - The user is responsible for freeing the allocated memory.
*
* @param seed pointer to a seed array
* @param len seed array length
* @return pointer to a dynamically allocated PRNG or, if unable to allocate memory, a null pointer
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* uint64_t r;
* int8_t status = obj->prng->next( obj, &r );
* if ( status != 0 ) {
* fprintf( stderr, "Unexpected result.\n" );
* exit( 1 );
* }
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
*/
struct BasePRNGObject * stdlib_base_random_mt19937_allocate( const uint32_t *seed, const int64_t len ) {
stdlib_base_random_mt19937_state_t *state;
struct BasePRNGObject *obj;
uint32_t *iseed;
obj = malloc( sizeof( struct BasePRNGObject ) );
if ( obj == NULL ) {
return NULL;
}
state = malloc( sizeof( stdlib_base_random_mt19937_state_t ) );
if ( state == NULL ) {
free( obj ); // prevent memory leaks
return NULL;
}
obj->prng = &mt19937_prng;
obj->state = state;
// Create an internal copy of the provided seed array to prevent the inability to reproduce PRNG values based on the PRNG's stated seed due to external state mutation:
iseed = (uint32_t *)malloc( sizeof( uint32_t )*len );
if ( iseed == NULL ) {
free( obj ); // prevent memory leaks
free( state );
return NULL;
}
memcpy( iseed, seed, sizeof( uint32_t )*len );
state->seed = iseed;
state->seed_length = len;
// Initialize the PRNG state:
create_state( state->state, N, SEED_ARRAY_INIT_STATE );
init_state( state->state, N, iseed, len );
// Set the state index which determines when we need to update the PRNG's internal state:
state->i = N;
return obj;
}
/**
* Frees a PRNG's allocated memory.
*
* @param obj PRNG object
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* uint64_t r;
* int8_t status = obj->prng->next( obj, &r );
* if ( status != 0 ) {
* fprintf( stderr, "Unexpected result.\n" );
* exit( 1 );
* }
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
*/
void stdlib_base_random_mt19937_free( struct BasePRNGObject *obj ) {
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return;
}
obj->prng->free( obj );
}
/**
* Returns the PRNG seed length.
*
* ## Notes
*
* - The function returns `-1` if unable to resolve a PRNG seed length and `0` otherwise.
*
* @param obj PRNG object
* @param len output address
* @return status code
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed1[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed1, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* // ...
*
* // Get the seed length:
* int64_t seed_length;
* int8_t status = stdlib_base_random_mt19937_seed_length( obj, &seed_length );
* if ( status != 0 ) {
* fprintf( stderr, "Error encountered when attempting to retrieve the PRNG seed length.\n" );
* exit( 1 );
* }
*
* // Get the PRNG seed:
* uint32_t *seed2 = (uint32_t *)malloc( sizeof( uint32_t )*seed_length );
* if ( seed2 == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
* status = stdlib_base_random_mt19937_seed( obj, seed2 );
* if ( status != 0 ) {
* fprintf( stderr, "Error encountered when attempting to retrieve the PRNG seed.\n" );
* exit( 1 );
* }
*
* // Use the seed to, e.g., create another PRNG which will generate the same sequence...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
* free( seed2 );
*/
int8_t stdlib_base_random_mt19937_seed_length( const struct BasePRNGObject *obj, int64_t *len ) {
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return -1;
}
// Retrieve the state object:
const stdlib_base_random_mt19937_state_t *state = (stdlib_base_random_mt19937_state_t *)( obj->state );
// Set the seed length:
*len = (int64_t)( state->seed_length );
return 0;
}
/**
* Returns a PRNG seed.
*
* ## Notes
*
* - The function returns `-1` if unable to resolve a PRNG seed and `0` otherwise.
*
* @param obj PRNG object
* @param seed output address
* @return status code
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed1[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed1, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* // ...
*
* // Get the seed length:
* int64_t seed_length;
* int8_t status = stdlib_base_random_mt19937_seed_length( obj, &seed_length );
* if ( status != 0 ) {
* fprintf( stderr, "Error encountered when attempting to retrieve the PRNG seed length.\n" );
* exit( 1 );
* }
*
* // Get the PRNG seed:
* uint32_t *seed2 = (uint32_t *)malloc( sizeof( uint32_t )*seed_length );
* if ( seed2 == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
* status = stdlib_base_random_mt19937_seed( obj, seed2 );
* if ( status != 0 ) {
* fprintf( stderr, "Error encountered when attempting to retrieve the PRNG seed.\n" );
* exit( 1 );
* }
*
* // Use the seed to, e.g., create another PRNG which will generate the same sequence...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
* free( seed2 );
*/
int8_t stdlib_base_random_mt19937_seed( const struct BasePRNGObject *obj, uint32_t *seed ) {
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return -1;
}
// Retrieve the state object:
const stdlib_base_random_mt19937_state_t *state = (stdlib_base_random_mt19937_state_t *)( obj->state );
// Copy the seed array:
memcpy( seed, state->seed, sizeof( uint32_t )*(state->seed_length) );
return 0;
}
/**
* Returns a **copy** of the current PRNG state.
*
* ## Notes
*
* - The user is responsible for freeing the allocated memory.
*
* @param obj PRNG object
* @return pointer to a copy of the PRNG's internal state or, if unable to allocate memory, a null pointer
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* stdlib_base_random_mt19937_state_t *state = (stdlib_base_random_mt19937_state_t *)stdlib_base_random_mt19937_state( obj );
* if ( state == NULL ) {
* fprintf( stderr, "Unable to retrieve PRNG state.\n" );
* exit( 1 );
* }
*
* // Use the captured state to, e.g., sync another PRNG or to reset a PRNG to a particular state in order to "replay" generated values at a later point in time...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
*
* free( state->seed );
* free( state );
*/
void * stdlib_base_random_mt19937_state( const struct BasePRNGObject *obj ) {
stdlib_base_random_mt19937_state_t *state;
stdlib_base_random_mt19937_state_t *so;
uint64_t nbytes;
uint32_t *seed;
if ( obj == NULL || obj->prng != &mt19937_prng ) {
return NULL;
}
state = (stdlib_base_random_mt19937_state_t *)malloc( obj->prng->state_size );
if ( state == NULL ) {
return NULL;
}
nbytes = sizeof( uint32_t ) * (state->seed_length);
seed = (uint32_t *)malloc( nbytes );
if ( seed == NULL ) {
free( state ); // prevent memory leaks
return NULL;
}
// Copy the state:
memcpy( state, obj->state, obj->prng->state_size );
// Explicitly copy the seed array to prevent external mutation:
so = (stdlib_base_random_mt19937_state_t *)( obj->state );
memcpy( seed, so->seed, nbytes );
state->seed = seed;
return (void *)state;
}
/**
* Sets the PRNG state.
*
* ## Notes
*
* - The function returns `-1` if unable to set a PRNG state and `0` otherwise.
*
* @param obj PRNG object
* @param state state
* @return status code
*
* @example
* #include <stdlib.h>
* #include <stdio.h>
* #include <stdint.h>
* #include "stdlib/random/base.h"
* #include "stdlib/random/base/mt19937.h"
*
* // Define a PRNG seed:
* uint32_t seed[] = { 12345 };
*
* // Create a PRNG:
* struct BasePRNGObject *obj = stdlib_base_random_mt19937_allocate( seed, 1 );
* if ( obj == NULL ) {
* fprintf( stderr, "Error allocating memory.\n" );
* exit( 1 );
* }
*
* uint64_t r;
* int8_t status = obj->prng->next( obj, &r );
* if ( status != 0 ) {
* fprintf( stderr, "Unexpected result.\n" );
* exit( 1 );
* }
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* // Retrieve the current PRNG state...
* stdlib_base_random_mt19937_state_t *state = (stdlib_base_random_mt19937_state_t *)stdlib_base_random_mt19937_state( obj );
* if ( state == NULL ) {
* fprintf( stderr, "Error encountered when attempting to retrieve PRNG state.\n" );
* exit( 1 );
* }
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* // Reset the PRNG to a previous state...
* status = stdlib_base_random_mt19937_set( obj, (void *)state );
* if ( status != 0 ) {
* fprintf( stderr, "Error encountered when attempting to set PRNG state.\n" );
* exit( 1 );
* }
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* status = obj->prng->next( obj, &r );
*
* // ...
*
* // Free allocated memory:
* stdlib_base_random_mt19937_free( obj );
*
* free( state->seed );
* free( state );
*/
int8_t stdlib_base_random_mt19937_set( struct BasePRNGObject *obj, const void *state ) {
stdlib_base_random_mt19937_state_t *vstate;
uint64_t nbytes;
uint32_t *seed;
if ( obj == NULL || state == NULL || obj->prng != &mt19937_prng ) {
return -1;
}
// Copy the provided seed array:
vstate = ( stdlib_base_random_mt19937_state_t *)state;
nbytes = sizeof( uint32_t ) * ( vstate->seed_length );
seed = (uint32_t *)malloc( nbytes );
if ( seed == NULL ) {
return -1;
}
memcpy( seed, vstate->seed, nbytes );
// Retrieve the current PRNG state:
vstate = ( stdlib_base_random_mt19937_state_t *)( obj->state );
// Free the memory held by the current seed array:
free( vstate->seed );
// Overwrite the current state with the provided state:
memcpy( vstate, state, obj->prng->state_size );
// Update the seed array pointer:
vstate->seed = seed;
return 0;
}