time-to-botec/js/node_modules/@stdlib/blas/base/sdot/src/sdot.f
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

122 lines
3.4 KiB
Fortran

!>
! @license Apache-2.0
!
! Copyright (c) 2019 The Stdlib Authors.
!
! Licensed under the Apache License, Version 2.0 (the "License");
! you may not use this file except in compliance with the License.
! You may obtain a copy of the License at
!
! http://www.apache.org/licenses/LICENSE-2.0
!
! Unless required by applicable law or agreed to in writing, software
! distributed under the License is distributed on an "AS IS" BASIS,
! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
! See the License for the specific language governing permissions and
! limitations under the License.
!<
!> Computes the dot product of two single-precision floating-point vectors.
!
! ## Notes
!
! * Modified version of reference BLAS level1 routine (version 3.7.0). Updated to "free form" Fortran 95.
!
! ## Authors
!
! * Univ. of Tennessee
! * Univ. of California Berkeley
! * Univ. of Colorado Denver
! * NAG Ltd.
!
! ## History
!
! * Jack Dongarra, linpack, 3/11/78.
!
! - modified 12/3/93, array(1) declarations changed to array(*)
!
! ## License
!
! From <http://netlib.org/blas/faq.html>:
!
! > The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. Thus, it can be included in commercial software packages (and has been). We only ask that proper credit be given to the authors.
! >
! > Like all software, it is copyrighted. It is not trademarked, but we do ask the following:
! >
! > * If you modify the source for these routines we ask that you change the name of the routine and comment the changes made to the original.
! >
! > * We will gladly answer any questions regarding the software. If a modification is done, however, it is the responsibility of the person who modified the routine to provide support.
!
! @param {integer} N - number of values over which to compute the dot product
! @param {Array<real>} sx - first array
! @param {integer} strideX - `sx` stride length
! @param {Array<real>} sy - second array
! @param {integer} strideY - `sy` stride length
! @returns {real} the dot product of `sx` and `sy`
!<
real function sdot( N, sx, strideX, sy, strideY )
implicit none
! ..
! Scalar arguments:
integer :: strideX, strideY, N
! ..
! Array arguments:
real, intent(in) :: sx(*), sy(*)
! ..
! Local scalars:
real :: stemp
integer :: mp1, ix, iy, i, m
! ..
! Intrinsic functions:
intrinsic mod
! ..
stemp = 0.0e0
sdot = 0.0e0
! ..
if ( N <= 0 ) then
return
end if
! ..
! If both strides are equal to `1`, use unrolled loops...
if ( strideX == 1 .AND. strideY == 1 ) then
m = mod( N, 5 )
! ..
! If we have a remainder, do a clean-up loop...
if ( m /= 0 ) then
do i = 1, m
stemp = stemp + ( sx( i ) * sy( i ) )
end do
end if
if ( N < M ) then
sdot = stemp
return
end if
mp1 = m + 1
do i = mp1, N, 5
stemp = stemp + &
( sx( i ) * sy( i ) ) + &
( sx( i+1 ) * sy( i+1 ) ) + &
( sx( i+2 ) * sy( i+2 ) ) + &
( sx( i+3 ) * sy( i+3 ) ) + &
( sx( i+4 ) * sy( i+4 ) )
end do
else
if ( strideX < 0 ) then
ix = ((1-N)*strideX) + 1
else
ix = 1
endif
if ( strideY < 0 ) then
iy = ((1-N)*strideY) + 1
else
iy = 1
endif
do i = 1, N
stemp = stemp + ( sx( ix ) * sy( iy ) )
ix = ix + strideX
iy = iy + strideY
end do
endif
sdot = stemp
return
end function sdot