time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/invgamma/pdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Probability Density Function

Inverse gamma distribution probability density function (PDF).

The probability density function (PDF) for an inverse gamma random variable is

Probability density function (PDF) for an inverse gamma distribution.

where alpha > 0 is the shape parameter and beta > 0 is the scale parameter.

Usage

var pdf = require( '@stdlib/stats/base/dists/invgamma/pdf' );

pdf( x, alpha, beta )

Evaluates the probability density function (PDF) for an inverse gamma distribution with parameters alpha (shape parameter) and beta (rate parameter).

var y = pdf( 2.0, 0.5, 1.0 );
// returns ~0.121

y = pdf( 0.2, 1.0, 1.0 );
// returns ~0.168

y = pdf( -1.0, 4.0, 2.0 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = pdf( NaN, 1.0, 1.0 );
// returns NaN

y = pdf( 0.0, NaN, 1.0 );
// returns NaN

y = pdf( 0.0, 1.0, NaN );
// returns NaN

If provided alpha <= 0, the function returns NaN.

var y = pdf( 2.0, 0.0, 1.0 );
// returns NaN

y = pdf( 2.0, -0.5, 1.0 );
// returns NaN

If provided beta <= 0, the function returns NaN.

var y = pdf( 2.0, 1.0, 0.0 );
// returns NaN

y = pdf( 2.0, 1.0, -1.0 );
// returns NaN

pdf.factory( alpha, beta )

Returns a function for evaluating the PDF of an inverse gamma distribution with parameters alpha (shape parameter) and beta (rate parameter).

var myPDF = pdf.factory( 6.0, 7.0 );

var y = myPDF( 2.0 );
// returns ~0.231

Examples

var randu = require( '@stdlib/random/base/randu' );
var pdf = require( '@stdlib/stats/base/dists/invgamma/pdf' );

var alpha;
var beta;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 2.0;
    alpha = randu() * 5.0;
    beta = randu() * 5.0;
    y = pdf( x, alpha, beta );
    console.log( 'x: %d, α: %d, β: %d, f(x;α,β): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}