|
|
||
|---|---|---|
| .. | ||
| dapx | ||
| dapxsum | ||
| dapxsumkbn | ||
| dapxsumkbn2 | ||
| dapxsumors | ||
| dapxsumpw | ||
| dasumpw | ||
| dcusum | ||
| dcusumkbn | ||
| dcusumkbn2 | ||
| dcusumors | ||
| dcusumpw | ||
| dfill | ||
| dnanasum | ||
| dnanasumors | ||
| dnannsum | ||
| dnannsumkbn | ||
| dnannsumkbn2 | ||
| dnannsumors | ||
| dnannsumpw | ||
| dnansum | ||
| dnansumkbn | ||
| dnansumkbn2 | ||
| dnansumors | ||
| dnansumpw | ||
| docs/types | ||
| drev | ||
| dsapxsum | ||
| dsapxsumpw | ||
| dsnannsumors | ||
| dsnansum | ||
| dsnansumors | ||
| dsnansumpw | ||
| dsort2hp | ||
| dsort2ins | ||
| dsort2sh | ||
| dsorthp | ||
| dsortins | ||
| dsortsh | ||
| dssum | ||
| dssumors | ||
| dssumpw | ||
| dsum | ||
| dsumkbn | ||
| dsumkbn2 | ||
| dsumors | ||
| dsumpw | ||
| gapx | ||
| gapxsum | ||
| gapxsumkbn | ||
| gapxsumkbn2 | ||
| gapxsumors | ||
| gapxsumpw | ||
| gasumpw | ||
| gcusum | ||
| gcusumkbn | ||
| gcusumkbn2 | ||
| gcusumors | ||
| gcusumpw | ||
| gfill | ||
| gfill-by | ||
| gnannsumkbn | ||
| gnansum | ||
| gnansumkbn | ||
| gnansumkbn2 | ||
| gnansumors | ||
| gnansumpw | ||
| grev | ||
| gsort2hp | ||
| gsort2ins | ||
| gsort2sh | ||
| gsorthp | ||
| gsortins | ||
| gsortsh | ||
| gsum | ||
| gsumkbn | ||
| gsumkbn2 | ||
| gsumors | ||
| gsumpw | ||
| lib | ||
| sapx | ||
| sapxsum | ||
| sapxsumkbn | ||
| sapxsumkbn2 | ||
| sapxsumors | ||
| sapxsumpw | ||
| sasumpw | ||
| scusum | ||
| scusumkbn | ||
| scusumkbn2 | ||
| scusumors | ||
| scusumpw | ||
| sdsapxsum | ||
| sdsapxsumpw | ||
| sdsnansum | ||
| sdsnansumpw | ||
| sdssum | ||
| sdssumpw | ||
| sfill | ||
| snansum | ||
| snansumkbn | ||
| snansumkbn2 | ||
| snansumors | ||
| snansumpw | ||
| srev | ||
| ssort2hp | ||
| ssort2ins | ||
| ssort2sh | ||
| ssorthp | ||
| ssortins | ||
| ssortsh | ||
| ssum | ||
| ssumkbn | ||
| ssumkbn2 | ||
| ssumors | ||
| ssumpw | ||
| package.json | ||
| README.md | ||
Extended BLAS
Standard library extensions to base basic linear algebra subprograms (BLAS).
Usage
var extblas = require( '@stdlib/blas/ext/base' );
extblas
Standard library extensions to base basic linear algebra subprograms (BLAS).
var ns = extblas;
// returns {...}
dapx( N, alpha, x, stride ): add a constant to each element in a double-precision floating-point strided array.dapxsum( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum.dapxsumkbn( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.dapxsumkbn2( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.dapxsumors( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using ordinary recursive summation.dapxsumpw( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using pairwise summation.dasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.dcusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements.dcusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dcusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dcusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using ordinary recursive summation.dcusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using pairwise summation.dfill( N, alpha, x, stride ): fill a double-precision floating-point strided array with a specified scalar constant.dnanasum( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaNvalues.dnanasumors( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaNvalues and using ordinary recursive summation.dnannsum( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues.dnannsumkbn( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using an improved Kahan–Babuška algorithm.dnannsumkbn2( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using a second-order iterative Kahan–Babuška algorithm.dnannsumors( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using ordinary recursive summation.dnannsumpw( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using pairwise summation.dnansum( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues.dnansumkbn( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using an improved Kahan–Babuška algorithm.dnansumkbn2( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using a second-order iterative Kahan–Babuška algorithm.dnansumors( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using ordinary recursive summation.dnansumpw( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoringNaNvalues and using pairwise summation.drev( N, x, stride ): reverse a double-precision floating-point strided array in-place.dsapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation and returning an extended precision result.dsapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation and returning an extended precision result.dsnannsumors( N, x, strideX, out, strideOut ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues, using extended accumulation, and returning an extended precision result.dsnansumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues, using pairwise summation with extended accumulation, and returning an extended precision result.dsort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using heapsort.dsort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using insertion sort.dsort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort.dsorthp( N, order, x, stride ): sort a double-precision floating-point strided array using heapsort.dsortins( N, order, x, stride ): sort a double-precision floating-point strided array using insertion sort.dsortsh( N, order, x, stride ): sort a double-precision floating-point strided array using Shellsort.dssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using extended accumulation and returning an extended precision result.dssumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result.dssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation and returning an extended precision result.dsum( N, x, stride ): calculate the sum of double-precision floating-point strided array elements.dsumkbn( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dsumkbn2( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dsumors( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.dsumpw( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using pairwise summation.gapx( N, alpha, x, stride ): add a constant to each element in a strided array.gapxsum( N, alpha, x, stride ): add a constant to each strided array element and compute the sum.gapxsumkbn( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.gapxsumkbn2( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.gapxsumors( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using ordinary recursive summation.gapxsumpw( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using pairwise summation.gasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of strided array elements using pairwise summation.gcusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements.gcusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.gcusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gcusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using ordinary recursive summation.gcusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using pairwise summation.gfillBy( N, x, stride, clbk[, thisArg] ): fill a strided array according to a provided callback function.gfill( N, alpha, x, stride ): fill a strided array with a specified scalar constant.gnannsumkbn( N, x, strideX, out, strideOut ): calculate the sum of strided array elements, ignoringNaNvalues and using an improved Kahan–Babuška algorithm.gnansum( N, x, stride ): calculate the sum of strided array elements, ignoringNaNvalues.gnansumkbn( N, x, stride ): calculate the sum of strided array elements, ignoringNaNvalues and using an improved Kahan–Babuška algorithm.gnansumkbn2( N, x, stride ): calculate the sum of strided array elements, ignoringNaNvalues and using a second-order iterative Kahan–Babuška algorithm.gnansumors( N, x, stride ): calculate the sum of strided array elements, ignoringNaNvalues and using ordinary recursive summation.gnansumpw( N, x, stride ): calculate the sum of strided array elements, ignoringNaNvalues and using pairwise summation.grev( N, x, stride ): reverse a strided array in-place.gsort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using heapsort.gsort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.gsort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using Shellsort.gsorthp( N, order, x, stride ): sort a strided array using heapsort.gsortins( N, order, x, stride ): sort a strided array using insertion sort.gsortsh( N, order, x, stride ): sort a strided array using Shellsort.gsum( N, x, stride ): calculate the sum of strided array elements.gsumkbn( N, x, stride ): calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.gsumkbn2( N, x, stride ): calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gsumors( N, x, stride ): calculate the sum of strided array elements using ordinary recursive summation.gsumpw( N, x, stride ): calculate the sum of strided array elements using pairwise summation.sapx( N, alpha, x, stride ): add a constant to each element in a single-precision floating-point strided array.sapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum.sapxsumkbn( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.sapxsumkbn2( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.sapxsumors( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.sapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.sasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of single-precision floating-point strided array elements using pairwise summation.scusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements.scusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.scusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.scusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using ordinary recursive summation.scusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.sdsapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation.sdsapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation.sdsnansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using extended accumulation.sdsnansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using pairwise summation with extended accumulation.sdssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using extended accumulation.sdssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation.sfill( N, alpha, x, stride ): fill a single-precision floating-point strided array with a specified scalar constant.snansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues.snansumkbn( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using an improved Kahan–Babuška algorithm.snansumkbn2( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using a second-order iterative Kahan–Babuška algorithm.snansumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using ordinary recursive summation.snansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoringNaNvalues and using pairwise summation.srev( N, x, stride ): reverse a single-precision floating-point strided array in-place.ssort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.ssort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using insertion sort.ssort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using Shellsort.ssorthp( N, order, x, stride ): sort a single-precision floating-point strided array using heapsort.ssortins( N, order, x, stride ): sort a single-precision floating-point strided array using insertion sort.ssortsh( N, order, x, stride ): sort a single-precision floating-point strided array using Shellsort.ssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements.ssumkbn( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.ssumkbn2( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.ssumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation.ssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/blas/ext/base' );
console.log( objectKeys( ns ) );