105 lines
3.4 KiB
C
105 lines
3.4 KiB
C
/**
|
||
* @license Apache-2.0
|
||
*
|
||
* Copyright (c) 2020 The Stdlib Authors.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
#include "stdlib/stats/base/dnanvariancech.h"
|
||
#include <stdint.h>
|
||
|
||
/**
|
||
* Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
|
||
*
|
||
* ## Method
|
||
*
|
||
* - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
|
||
*
|
||
* ## References
|
||
*
|
||
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
|
||
* - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
|
||
* - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
|
||
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
|
||
*
|
||
* @param N number of indexed elements
|
||
* @param correction degrees of freedom adjustment
|
||
* @param X input array
|
||
* @param stride stride length
|
||
* @return output value
|
||
*/
|
||
double stdlib_strided_dnanvariancech( const int64_t N, const double correction, const double *X, const int64_t stride ) {
|
||
int64_t ix;
|
||
int64_t n;
|
||
int64_t i;
|
||
double M2;
|
||
double mu;
|
||
double nc;
|
||
double dn;
|
||
double M;
|
||
double d;
|
||
double v;
|
||
|
||
if ( N <= 0 ) {
|
||
return 0.0 / 0.0; // NaN
|
||
}
|
||
if ( N == 1 || stride == 0 ) {
|
||
v = X[ 0 ];
|
||
if ( v == v && (double)N-correction > 0.0 ) {
|
||
return 0.0;
|
||
}
|
||
return 0.0 / 0.0; // NaN
|
||
}
|
||
if ( stride < 0 ) {
|
||
ix = (1-N) * stride;
|
||
} else {
|
||
ix = 0;
|
||
}
|
||
// Find an estimate for the mean...
|
||
for ( i = 0; i < N; i++ ) {
|
||
v = X[ ix ];
|
||
if ( v == v ) {
|
||
mu = v;
|
||
break;
|
||
}
|
||
ix += stride;
|
||
}
|
||
if ( i == N ) {
|
||
return 0.0 / 0.0; // NaN
|
||
}
|
||
ix += stride;
|
||
i += 1;
|
||
|
||
// Compute the variance...
|
||
M2 = 0.0;
|
||
M = 0.0;
|
||
n = 1;
|
||
for (; i < N; i++ ) {
|
||
v = X[ ix ];
|
||
if ( v == v ) {
|
||
d = v - mu;
|
||
M2 += d * d;
|
||
M += d;
|
||
n += 1;
|
||
}
|
||
ix += stride;
|
||
}
|
||
dn = (double)n;
|
||
nc = dn - correction;
|
||
if ( nc <= 0.0 ) {
|
||
return 0.0 / 0.0; // NaN
|
||
}
|
||
return (M2/nc) - ((M/dn)*(M/nc));
|
||
}
|