time-to-botec/squiggle/node_modules/@stdlib/stats/base/dnanvariancech/src/dnanvariancech.c
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

105 lines
3.4 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/dnanvariancech.h"
#include <stdint.h>
/**
* Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
*
* ## Method
*
* - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 85966. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
* - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 24247. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param stride stride length
* @return output value
*/
double stdlib_strided_dnanvariancech( const int64_t N, const double correction, const double *X, const int64_t stride ) {
int64_t ix;
int64_t n;
int64_t i;
double M2;
double mu;
double nc;
double dn;
double M;
double d;
double v;
if ( N <= 0 ) {
return 0.0 / 0.0; // NaN
}
if ( N == 1 || stride == 0 ) {
v = X[ 0 ];
if ( v == v && (double)N-correction > 0.0 ) {
return 0.0;
}
return 0.0 / 0.0; // NaN
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
// Find an estimate for the mean...
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
mu = v;
break;
}
ix += stride;
}
if ( i == N ) {
return 0.0 / 0.0; // NaN
}
ix += stride;
i += 1;
// Compute the variance...
M2 = 0.0;
M = 0.0;
n = 1;
for (; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
d = v - mu;
M2 += d * d;
M += d;
n += 1;
}
ix += stride;
}
dn = (double)n;
nc = dn - correction;
if ( nc <= 0.0 ) {
return 0.0 / 0.0; // NaN
}
return (M2/nc) - ((M/dn)*(M/nc));
}