102 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | ||
| * @license Apache-2.0
 | ||
| *
 | ||
| * Copyright (c) 2020 The Stdlib Authors.
 | ||
| *
 | ||
| * Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| * you may not use this file except in compliance with the License.
 | ||
| * You may obtain a copy of the License at
 | ||
| *
 | ||
| *    http://www.apache.org/licenses/LICENSE-2.0
 | ||
| *
 | ||
| * Unless required by applicable law or agreed to in writing, software
 | ||
| * distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| * See the License for the specific language governing permissions and
 | ||
| * limitations under the License.
 | ||
| */
 | ||
| 
 | ||
| #include "stdlib/stats/base/svariancewd.h"
 | ||
| #include <stdint.h>
 | ||
| 
 | ||
| /**
 | ||
| * Computes the variance of a single-precision floating-point strided array using Welford's algorithm.
 | ||
| *
 | ||
| * ## Method
 | ||
| *
 | ||
| * -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
 | ||
| *
 | ||
| *     ```tex
 | ||
| *     \begin{align*}
 | ||
| *     S_n &= n \sigma_n^2 \\
 | ||
| *         &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
 | ||
| *         &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
 | ||
| *     \end{align*}
 | ||
| *     ```
 | ||
| *
 | ||
| *     Accordingly,
 | ||
| *
 | ||
| *     ```tex
 | ||
| *     \begin{align*}
 | ||
| *     S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
 | ||
| *                   &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
 | ||
| *                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
 | ||
| *                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
 | ||
| *                   &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
 | ||
| *                   &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
 | ||
| *                   &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
 | ||
| *                   &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
 | ||
| *                   &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
 | ||
| *     \end{align*}
 | ||
| *     ```
 | ||
| *
 | ||
| *     where we use the identity
 | ||
| *
 | ||
| *     ```tex
 | ||
| *     x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
 | ||
| *     ```
 | ||
| *
 | ||
| * ## References
 | ||
| *
 | ||
| * -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
 | ||
| * -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
 | ||
| *
 | ||
| * @param N           number of indexed elements
 | ||
| * @param correction  degrees of freedom adjustment
 | ||
| * @param X           input array
 | ||
| * @param stride      stride length
 | ||
| * @return            output value
 | ||
| */
 | ||
| float stdlib_strided_svariancewd( const int64_t N, const float correction, const float *X, const int64_t stride ) {
 | ||
| 	float delta;
 | ||
| 	int64_t ix;
 | ||
| 	int64_t i;
 | ||
| 	double n;
 | ||
| 	float mu;
 | ||
| 	float M2;
 | ||
| 	float v;
 | ||
| 
 | ||
| 	n = (double)N - (double)correction;
 | ||
| 	if ( N <= 0 || n <= 0.0f ) {
 | ||
| 		return 0.0f / 0.0f; // NaN
 | ||
| 	}
 | ||
| 	if ( N == 1 || stride == 0 ) {
 | ||
| 		return 0.0f;
 | ||
| 	}
 | ||
| 	if ( stride < 0 ) {
 | ||
| 		ix = (1-N) * stride;
 | ||
| 	} else {
 | ||
| 		ix = 0;
 | ||
| 	}
 | ||
| 	M2 = 0.0f;
 | ||
| 	mu = 0.0f;
 | ||
| 	for ( i = 0; i < N; i++ ) {
 | ||
| 		v = X[ ix ];
 | ||
| 		delta = v - mu;
 | ||
| 		mu += (float)((double)delta / (double)(i+1));
 | ||
| 		M2 += delta * ( v - mu );
 | ||
| 		ix += stride;
 | ||
| 	}
 | ||
| 	return (double)M2 / n;
 | ||
| }
 |