|
|
||
|---|---|---|
| .. | ||
| docs | ||
| lib | ||
| package.json | ||
| README.md | ||
incrmcovariance
Compute a moving unbiased sample covariance incrementally.
For unknown population means, the unbiased sample covariance for a window n of size W is defined as
where j specifies the index of the value at which the window begins. For example, for a trailing (i.e., non-centered) window using zero-based indexing and j greater than or equal to W, j is the n-Wth value with n being the number of values thus analyzed.
For known population means, the unbiased sample covariance for a window n of size W is defined as
Usage
var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' );
incrmcovariance( window[, mx, my] )
Returns an accumulator function which incrementally computes a moving unbiased sample covariance. The window parameter defines the number of values over which to compute the moving unbiased sample covariance.
var accumulator = incrmcovariance( 3 );
If means are already known, provide mx and my arguments.
var accumulator = incrmcovariance( 3, 5.0, -3.14 );
accumulator( [x, y] )
If provided input values x and y, the accumulator function returns an updated unbiased sample covariance. If not provided input values x and y, the accumulator function returns the current unbiased sample covariance.
var accumulator = incrmcovariance( 3 );
var v = accumulator();
// returns null
// Fill the window...
v = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)]
// returns 0.0
v = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)]
// returns ~-7.49
v = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)]
// returns -8.35
// Window begins sliding...
v = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)]
// returns -29.42
v = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)]
// returns -24.5
v = accumulator();
// returns -24.5
Notes
- Input values are not type checked. If provided
NaNor a value which, when used in computations, results inNaN, the accumulated value isNaNfor at leastW-1future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function. - As
W(x,y) pairs are needed to fill the window buffer, the firstW-1returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrmcovariance( 5 );
// For each simulated datum, update the moving unbiased sample covariance...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );