time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/triangular/logpdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Probability Density Function

Triangular distribution logarithm of probability density function (PDF).

The probability density function (PDF) for a triangular random variable is

Probability density function (PDF) for a triangular distribution.

where a is the lower limit and b is the upper limit and c is the mode.

Usage

var logpdf = require( '@stdlib/stats/base/dists/triangular/logpdf' );

logpdf( x, a, b, c )

Evaluates the natural logarithm of the probability density function (PDF) for a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).

var y = logpdf( 0.5, -1.0, 1.0, 0.0 );
// returns ~-0.693

y = logpdf( 0.5, -1.0, 1.0, 0.5 );
// returns 0.0

y = logpdf( -10.0, -20.0, 0.0, -2.0 );
// returns ~-2.89

y = logpdf( -2.0, -1.0, 1.0, 0.0 );
// returns -Infinity

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 0.0, 1.0, 0.5 );
// returns NaN

y = logpdf( 0.0, NaN, 1.0, 0.5 );
// returns NaN

y = logpdf( 0.0, 0.0, NaN, 0.5 );
// returns NaN

y = logpdf( 2.0, 1.0, 0.0, NaN );
// returns NaN

If provided parameters not satisfying a <= c <= b, the function returns NaN.

var y = logpdf( 1.0, 1.0, 0.0, 1.5 );
// returns NaN

y = logpdf( 1.0, 1.0, 0.0, -1.0 );
// returns NaN

y = logpdf( 1.0, 0.0, -1.0, 0.5 );
// returns NaN

logpdf.factory( a, b, c )

Returns a function for evaluating the natural logarithm of the probability density function (PDF) of a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).

var mylogpdf = logpdf.factory( 0.0, 10.0, 5.0 );
var y = mylogpdf( 2.0 );
// returns ~-2.526

y = mylogpdf( 12.0 );
// returns -Infinity

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/triangular/logpdf' );

var a;
var b;
var c;
var x;
var y;
var i;

for ( i = 0; i < 25; i++ ) {
    x = randu() * 30.0;
    a = randu() * 10.0;
    b = a + (randu() * 40.0);
    c = a + ((b-a) * randu());
    y = logpdf( x, a, b, c );
    console.log( 'x: %d, a: %d, b: %d, c: %d, ln(f(x;a,b,c)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
}