time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/geometric/logpmf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Probability Mass Function

Geometric distribution logarithm of probability mass function (PMF).

The probability mass function (PMF) for a geometric random variable is defined as

Probability mass function (PMF) for a geometric distribution.

where 0 <= p <= 1 is the success probability. The random variable X denotes the number of failures until the first success in a sequence of independent Bernoulli trials.

Usage

var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' );

logpmf( x, p )

Evaluates the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.

var y = logpmf( 4.0, 0.3 );
// returns ~-2.631

y = logpmf( 2.0, 0.7 );
// returns ~-2.765

y = logpmf( -1.0, 0.5 );
// returns -Infinity

If provided NaN as any argument, the function returns NaN.

var y = logpmf( NaN, 0.0 );
// returns NaN

y = logpmf( 0.0, NaN );
// returns NaN

If provided a success probability p outside of the interval [0,1], the function returns NaN.

var y = logpmf( 2.0, -1.0 );
// returns NaN

y = logpmf( 2.0, 1.5 );
// returns NaN

logpmf.factory( p )

Returns a function for evaluating the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.

var mylogpmf = logpmf.factory( 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-2.773

y = mylogpmf( 1.0 );
// returns ~-1.386

Notes

  • In virtually all cases, using the logpmf or logcdf functions is preferable to manually computing the logarithm of the pmf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' );

var p;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = round( randu() * 5.0 );
    p = randu();
    y = logpmf( x, p );
    console.log( 'x: %d, p: %d, ln( P( X = x; p ) ): %d', x, p.toFixed( 4 ), y.toFixed( 4 ) );
}