time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/cauchy/logpdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Probability Density Function

Cauchy distribution logarithm of probability density function (logPDF).

The probability density function (PDF) for a Cauchy random variable is

Probability density function (PDF) for a Cauchy distribution.

where x0 is the location parameter and gamma > 0 is the scale parameter.

Usage

var logpdf = require( '@stdlib/stats/base/dists/cauchy/logpdf' );

logpdf( x, x0, gamma )

Evaluates the natural logarithm of the probability density function (PDF) for a Cauchy distribution with parameters x0 (location parameter) and gamma > 0 (scale parameter).

var y = logpdf( 2.0, 1.0, 1.0 );
// returns ~-1.838

y = logpdf( 4.0, 3.0, 0.1 );
// returns ~-3.457

y = logpdf( 4.0, 3.0, 3.0 );
// returns ~-2.349

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN

y = logpdf( 2.0, NaN, 1.0 );
// returns NaN

y = logpdf( 2.0, 1.0, NaN );
// returns NaN

If provided gamma <= 0, the function returns NaN.

var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN

logpdf.factory( x0, gamma )

Returns a function for evaluating the natural logarithm of the PDF of a Cauchy distribution with location parameter x0 and scale parameter gamma.

var mylogpdf = logpdf.factory( 10.0, 2.0 );

var y = mylogpdf( 10.0 );
// returns ~-1.838

y = mylogpdf( 5.0 );
// returns ~-3.819

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var logpdf = require( '@stdlib/stats/base/dists/cauchy/logpdf' );

var gamma;
var x0;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    x0 = ( randu()*10.0 ) - 5.0;
    gamma = ( randu()*20.0 ) + EPS;
    y = logpdf( x, gamma, x0 );
    console.log( 'x: %d, x0: %d, γ: %d, ln(f(x;x0,γ)): %d', x.toFixed(4), x0.toFixed(4), gamma.toFixed(4), y.toFixed(4) );
}