time-to-botec/squiggle/node_modules/@stdlib/ndarray/base/unary/lib/nd.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

149 lines
3.7 KiB
JavaScript

/**
* @license Apache-2.0
*
* Copyright (c) 2021 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var numel = require( './../../../base/numel' );
var vind2bind = require( './../../../base/vind2bind' );
// VARIABLES //
var MODE = 'throw';
// MAIN //
/**
* Applies a unary callback to elements in an n-dimensional input ndarray and assigns results to elements in an equivalently shaped output ndarray.
*
* @private
* @param {Object} x - object containing input ndarray meta data
* @param {string} x.dtype - data type
* @param {Collection} x.data - data buffer
* @param {NonNegativeIntegerArray} x.shape - dimensions
* @param {IntegerArray} x.strides - stride lengths
* @param {NonNegativeInteger} x.offset - index offset
* @param {string} x.order - specifies whether `x` is row-major (C-style) or column-major (Fortran-style)
* @param {Object} y - object containing output ndarray meta data
* @param {string} y.dtype - data type
* @param {Collection} y.data - data buffer
* @param {NonNegativeIntegerArray} y.shape - dimensions
* @param {IntegerArray} y.strides - stride lengths
* @param {NonNegativeInteger} y.offset - index offset
* @param {string} y.order - specifies whether `y` is row-major (C-style) or column-major (Fortran-style)
* @param {Callback} fcn - unary callback
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* function scale( x ) {
* return x * 10.0;
* }
*
* // Create data buffers:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
* var ybuf = new Float64Array( 4 );
*
* // Define the shape of the input and output arrays:
* var shape = [ 2, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 1 ];
* var sy = [ 2, 1 ];
*
* // Define the index offsets:
* var ox = 1;
* var oy = 0;
*
* // Create the input and output ndarray-like objects:
* var x = {
* 'dtype': 'float64',
* 'data': xbuf,
* 'shape': shape,
* 'strides': sx,
* 'offset': ox,
* 'order': 'row-major'
* };
* var y = {
* 'dtype': 'float64',
* 'data': ybuf,
* 'shape': shape,
* 'strides': sy,
* 'offset': oy,
* 'order': 'row-major'
* };
*
* // Apply the unary function:
* unarynd( x, y, scale );
*
* console.log( y.data );
* // => <Float64Array>[ 20.0, 30.0, 60.0, 70.0 ]
*/
function unarynd( x, y, fcn ) {
var xbuf;
var ybuf;
var ordx;
var ordy;
var len;
var sh;
var sx;
var sy;
var ox;
var oy;
var ix;
var iy;
var i;
sh = x.shape;
// Compute the total number of elements over which to iterate:
len = numel( sh );
// Cache references to the input and output ndarray data buffers:
xbuf = x.data;
ybuf = y.data;
// Cache references the respective stride arrays:
sx = x.strides;
sy = y.strides;
// Cache the indices of the first indexed elements in the respective ndarrays:
ox = x.offset;
oy = y.offset;
// Cache the respective array orders:
ordx = x.order;
ordy = y.order;
// Iterate over each element based on the linear **view** index, regardless as to how the data is stored in memory...
for ( i = 0; i < len; i++ ) {
ix = vind2bind( sh, sx, ox, ordx, i, MODE );
iy = vind2bind( sh, sy, oy, ordy, i, MODE );
ybuf[ iy ] = fcn( xbuf[ ix ] );
}
}
// EXPORTS //
module.exports = unarynd;