|
||
---|---|---|
.. | ||
abs | ||
abs2 | ||
acos | ||
acosh | ||
acot | ||
acoth | ||
acovercos | ||
acoversin | ||
ahavercos | ||
ahaversin | ||
asin | ||
asinh | ||
atan | ||
atan2 | ||
atanh | ||
avercos | ||
aversin | ||
besselj0 | ||
besselj1 | ||
bessely0 | ||
bessely1 | ||
beta | ||
betaln | ||
binet | ||
cbrt | ||
ceil | ||
ceil2 | ||
ceil10 | ||
cos | ||
cosh | ||
cosm1 | ||
cospi | ||
covercos | ||
coversin | ||
deg2rad | ||
digamma | ||
dirac-delta | ||
dirichlet-eta | ||
docs/types | ||
ellipe | ||
ellipk | ||
erf | ||
erfc | ||
erfcinv | ||
erfinv | ||
exp | ||
exp2 | ||
exp10 | ||
expit | ||
expm1 | ||
expm1rel | ||
factorial | ||
factorialln | ||
floor | ||
floor2 | ||
floor10 | ||
fresnelc | ||
fresnels | ||
gamma | ||
gamma1pm1 | ||
gammaln | ||
hacovercos | ||
hacoversin | ||
havercos | ||
haversin | ||
inv | ||
lib | ||
ln | ||
log | ||
log1mexp | ||
log1p | ||
log1pexp | ||
log2 | ||
log10 | ||
logit | ||
pow | ||
rad2deg | ||
ramp | ||
riemann-zeta | ||
round | ||
round2 | ||
round10 | ||
rsqrt | ||
signum | ||
sin | ||
sinc | ||
sinh | ||
sinpi | ||
spence | ||
sqrt | ||
sqrt1pm1 | ||
tan | ||
tanh | ||
trigamma | ||
trunc | ||
trunc2 | ||
trunc10 | ||
vercos | ||
versin | ||
package.json | ||
README.md |
Special Functions
Standard library math iterators for special functions.
Usage
var ns = require( '@stdlib/math/iter/special' );
ns
Standard library math iterators for special functions.
var iterators = ns;
// returns {...}
The namespace contains the following functions for creating iterator protocol-compliant iterators:
iterAbs( iterator )
: create an iterator which iteratively computes the absolute value.iterAbs2( iterator )
: create an iterator which iteratively computes the squared absolute value.iterAcos( iterator )
: create an iterator which iteratively computes the arccosine.iterAcosh( iterator )
: create an iterator which iteratively computes the hyperbolic arccosine.iterAcot( iterator )
: create an iterator which iteratively computes the inverse cotangent.iterAcoth( iterator )
: create an iterator which iteratively computes the inverse hyperbolic cotangent.iterAcovercos( iterator )
: create an iterator which iteratively computes the inverse coversed cosine.iterAcoversin( iterator )
: create an iterator which iteratively computes the inverse coversed sine.iterAhavercos( iterator )
: create an iterator which iteratively computes the inverse half-value versed cosine.iterAhaversin( iterator )
: create an iterator which iteratively computes the inverse half-value versed sine.iterAsin( iterator )
: create an iterator which iteratively computes the arcsine.iterAsinh( iterator )
: create an iterator which iteratively computes the hyperbolic arcsine.iterAtan( iterator )
: create an iterator which iteratively computes the arctangent.iterAtan2( y, x )
: create an iterator which iteratively computes the angle in the plane (in radians) between the positive x-axis and the ray from(0,0)
to the point(x,y)
.iterAtanh( iterator )
: create an iterator which iteratively computes the hyperbolic arctangent.iterAvercos( iterator )
: create an iterator which iteratively computes the inverse versed cosine.iterAversin( iterator )
: create an iterator which iteratively computes the inverse versed sine.iterBesselj0( iterator )
: create an iterator which iteratively evaluates the Bessel function of the first kind of order zero.iterBesselj1( iterator )
: create an iterator which iteratively evaluates the Bessel function of the first kind of order one.iterBessely0( iterator )
: create an iterator which iteratively evaluates the Bessel function of the second kind of order zero.iterBessely1( iterator )
: create an iterator which iteratively evaluates the Bessel function of the second kind of order one.iterBeta( x, y )
: create an iterator which iteratively evaluates the beta function.iterBetaln( x, y )
: create an iterator which iteratively evaluates the natural logarithm of the beta function.iterBinet( iterator )
: create an iterator which iteratively evaluates Binet's formula extended to real numbers.iterCbrt( iterator )
: create an iterator which iteratively computes the cube root.iterCeil( iterator )
: create an iterator which rounds each iterated value toward positive infinity.iterCeil10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward positive infinity.iterCeil2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward positive infinity.iterCos( iterator )
: create an iterator which iteratively computes the cosine.iterCosh( iterator )
: create an iterator which computes the hyperbolic cosine for each iterated value.iterCosm1( iterator )
: create an iterator which computescos(x) - 1
for each iterated value.iterCospi( iterator )
: create an iterator which computes the cosine of each iterated value times π.iterCovercos( iterator )
: create an iterator which computes the coversed cosine for each iterated value.iterCoversin( iterator )
: create an iterator which computes the coversed sine for each iterated value.iterDeg2rad( iterator )
: create an iterator which converts an angle from degrees to radians for each iterated value.iterDigamma( iterator )
: create an iterator which evaluates the digamma function for each iterated value.iterDiracDelta( iterator )
: create an iterator which iteratively evaluates the Dirac delta function.iterEta( iterator )
: create an iterator which iteratively evaluates the Dirichlet eta function.iterEllipe( iterator )
: create an iterator which computes the complete elliptic integral of the second kind for each iterated value.iterEllipk( iterator )
: create an iterator which computes the complete elliptic integral of the first kind for each iterated value.iterErf( iterator )
: create an iterator which iteratively evaluates the error function.iterErfc( iterator )
: create an iterator which iteratively evaluates the complementary error function.iterErfcinv( iterator )
: create an iterator which iteratively evaluates the inverse complementary error function.iterErfinv( iterator )
: create an iterator which iteratively evaluates the inverse error function.iterExp( iterator )
: create an iterator which iteratively evaluates the natural exponential function.iterExp10( iterator )
: create an iterator which evaluates the base 10 exponential function for each iterated value.iterExp2( iterator )
: create an iterator which evaluates the base 2 exponential function for each iterated value.iterExpit( iterator )
: create an iterator which evaluates the standard logistic function for each iterated value.iterExpm1( iterator )
: create an iterator which computesexp(x) - 1
for each iterated value.iterExpm1rel( iterator )
: create an iterator which evaluates the relative error exponential for each iterated value.iterFactorial( iterator )
: create an iterator which iteratively evaluates the factorial function.iterFactorialln( iterator )
: create an iterator which iteratively evaluates the natural logarithm of the factorial function.iterFloor( iterator )
: create an iterator which rounds each iterated value toward negative infinity.iterFloor10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward negative infinity.iterFloor2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward negative infinity.iterFresnelc( iterator )
: create an iterator which computes the Fresnel integral C(x) for each iterated value.iterFresnels( iterator )
: create an iterator which computes the Fresnel integral S(x) for each iterated value.iterGamma( iterator )
: create an iterator which iteratively evaluates the gamma function.iterGamma1pm1( iterator )
: create an iterator which computesgamma(x+1) - 1
for each iterated value.iterGammaln( iterator )
: create an iterator which iteratively evaluates the natural logarithm of the gamma function.iterHacovercos( iterator )
: create an iterator which computes the half-value coversed cosine for each iterated value.iterHacoversin( iterator )
: create an iterator which computes the half-value coversed sine for each iterated value.iterHavercos( iterator )
: create an iterator which computes the half-value versed cosine for each iterated value.iterHaversin( iterator )
: create an iterator which computes the half-value versed sine for each iterated value.iterInv( iterator )
: create an iterator which iteratively computes the multiplicative inverse.iterLn( iterator )
: create an iterator which iteratively evaluates the natural logarithm.iterLog( x, b )
: create an iterator which iteratively computes the baseb
logarithm.iterLog10( iterator )
: create an iterator which iteratively evaluates the common logarithm (logarithm with base 10).iterLog1mexp( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1-exp(-|x|)
.iterLog1p( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1+x
.iterLog1pexp( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1+exp(x)
.iterLog2( iterator )
: create an iterator which iteratively evaluates the binary logarithm.iterLogit( iterator )
: create an iterator which evaluates the logit function for each iterated value.iterPow( base, exponent )
: create an iterator which iteratively evaluates the exponential function.iterRad2deg( iterator )
: create an iterator which converts an angle from radians to degrees for each iterated value.iterRamp( iterator )
: create an iterator which iteratively evaluates the ramp function.iterZeta( iterator )
: create an iterator which evaluates the Riemann zeta function for each iterated value.iterRound( iterator )
: create an iterator which rounds each iterated value to the nearest integer.iterRound10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 on a linear scale.iterRound2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two on a linear scale.iterRsqrt( iterator )
: create an iterator which iteratively computes the reciprocal (inverse) square root.iterSignum( iterator )
: create an iterator which iteratively evaluates the signum function.iterSin( iterator )
: create an iterator which iteratively computes the sine.iterSinc( iterator )
: create an iterator which computes the normalized cardinal sine for each iterated value.iterSinh( iterator )
: create an iterator which evaluates the hyperbolic sine for each iterated value.iterSinpi( iterator )
: create an iterator which computes the sine of each iterated value times π.iterSpence( iterator )
: create an iterator which evaluates Spence's function for each iterated value.iterSqrt( iterator )
: create an iterator which iteratively computes the principal square root.iterSqrt1pm1( iterator )
: create an iterator which computessqrt(1+x) - 1
for each iterated value.iterTan( iterator )
: create an iterator which evaluates the tangent for each iterated value.iterTanh( iterator )
: create an iterator which evaluates the hyperbolic tangent for each iterated value.iterTrigamma( iterator )
: create an iterator which evaluates the trigamma function for each iterated value.iterTrunc( iterator )
: create an iterator which rounds each iterated value toward zero.iterTrunc10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward zero.iterTrunc2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward zero.iterVercos( iterator )
: create an iterator which computes the versed cosine for each iterated value.iterVersin( iterator )
: create an iterator which computes the versed sine for each iterated value.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/math/iter/special' );
console.log( objectKeys( ns ) );