time-to-botec/squiggle/node_modules/@stdlib/math/base/special/cceiln
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

ceiln

Round a complex number to the nearest multiple of 10^n toward positive infinity.

Usage

var cceiln = require( '@stdlib/math/base/special/cceiln' );

cceiln( [out,] re, im, n )

Rounds a complex number comprised of a real component re and an imaginary component im to the nearest multiple of 10^n toward positive infinity.

// Round components to 2 decimal places:
var v = cceiln( -3.141592653589793, 3.141592653589793, -2 );
// returns [ -3.14, 3.15 ]

// If n = 0, `cceiln` behaves like `cceil`:
v = cceiln( -3.141592653589793, 3.141592653589793, 0 );
// returns [ -3.0, 4.0 ]

// Round components to the nearest thousand:
v = cceiln( -12368.0, 12368.0, 3 );
// returns [ -12000.0, 13000.0 ]

v = cceiln( NaN, NaN, 0 );
// returns [ NaN, NaN ]

By default, the function returns real and imaginary components as a two-element array. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.

var Float32Array = require( '@stdlib/array/float32' );

var out = new Float32Array( 2 );

var v = cceiln( out, -4.2, 5.5, 0 );
// returns <Float32Array>[ -4.0, 6.0 ]

var bool = ( v === out );
// returns true

Notes

  • When operating on floating-point numbers in bases other than 2, rounding to specified digits can be inexact. For example,

    var x = 0.2 + 0.1;
    // returns 0.30000000000000004
    
    // Should round components to 0.3:
    var v = cceiln( x, x, -16 );
    // returns [ 0.3000000000000001, 0.3000000000000001 ]
    

Examples

var Complex128 = require( '@stdlib/complex/float64' );
var randu = require( '@stdlib/random/base/randu' );
var ceil = require( '@stdlib/math/base/special/ceil' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );
var cceiln = require( '@stdlib/math/base/special/cceiln' );

var re;
var im;
var z;
var o;
var w;
var n;
var i;

for ( i = 0; i < 100; i++ ) {
    re = ( randu()*100.0 ) - 50.0;
    im = ( randu()*100.0 ) - 50.0;
    z = new Complex128( re, im );

    n = ceil( randu()*5.0 );
    o = cceiln( real(z), imag(z), -n );
    w = new Complex128( o[ 0 ], o[ 1 ] );

    console.log( 'ceiln(%s,%s) = %s', z.toString(), n.toString(), w.toString() );
}