time-to-botec/squiggle/node_modules/@stdlib/blas/ext/base/scusumpw
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
include/stdlib/blas/ext/base feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
src feat: add the node modules 2022-12-03 12:44:49 +00:00
binding.gyp feat: add the node modules 2022-12-03 12:44:49 +00:00
include.gypi feat: add the node modules 2022-12-03 12:44:49 +00:00
manifest.json feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

scusumpw

Calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.

Usage

var scusumpw = require( '@stdlib/blas/ext/base/scusumpw' );

scusumpw( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of single-precision floating-point strided array elements using pairwise summation.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );

scusumpw( x.length, 0.0, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]

x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
y = new Float32Array( x.length );

scusumpw( x.length, 10.0, x, 1, y, 1 );
// y => <Float32Array>[ 11.0, 9.0, 11.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • sum: initial sum.
  • x: input Float32Array.
  • strideX: index increment for x.
  • y: output Float32Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative sum of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );

var N = floor( x.length / 2 );

var v = scusumpw( N, 0.0, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

var N = floor( x0.length / 2 );

scusumpw( N, 0.0, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

scusumpw.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of single-precision floating-point strided array elements using pairwise summation and alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );

scusumpw.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );

var N = floor( x.length / 2 );

scusumpw.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.
  • In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the KahanBabuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var scusumpw = require( '@stdlib/blas/ext/base/scusumpw' );

var y;
var x;
var i;

x = new Float32Array( 10 );
y = new Float32Array( x.length );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( randu()*100.0 );
}
console.log( x );
console.log( y );

scusumpw( x.length, 0.0, x, 1, y, -1 );
console.log( y );

References

  • Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 78399. doi:10.1137/0914050.