time-to-botec/js/node_modules/@stdlib/stats/kstest/lib/marsaglia.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

175 lines
3.7 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var floor = require( '@stdlib/math/base/special/floor' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var pow = require( '@stdlib/math/base/special/pow' );
var exp = require( '@stdlib/math/base/special/exp' );
var Float64Array = require( '@stdlib/array/float64' );
// MAIN //
/**
* Evaluates the Kolmogorov distribution. This function is a JavaScript implementation of a procedure developed by Marsaglia & Tsang.
*
* ## References
*
* - Marsaglia, George, Wai Wan Tsang, and Jingbo Wang. 2003. "Evaluating Kolmogorov's Distribution." _Journal of Statistical Software_ 8 (18): 14. doi:[10.18637/jss.v008.i18](https://doi.org/10.18637/jss.v008.i18).
*
* @private
* @param {number} d - the argument of the CDF of D_n
* @param {number} n - number of variates
* @returns {number} evaluated CDF, i.e. P( D_n < d )
*/
function pKolmogorov( d, n ) {
var eH;
var eQ;
var h;
var H;
var Q;
var g;
var i;
var j;
var k;
var m;
var s;
s = d * d * n;
if ( s > 7.24 || ( s > 3.76 && n > 99 ) ) {
return 1 - (2 * exp( -( 2.000071 + (0.331/sqrt(n)) + (1.409/n) ) * s ));
}
k = floor( n * d ) + 1;
m = (2*k) - 1;
h = k - (n*d);
H = new Float64Array( m * m );
Q = new Float64Array( m * m );
for ( i = 0; i < m; i++ ) {
for ( j = 0; j < m; j++ ) {
if ( i - j + 1 < 0 ) {
H[ (i*m) + j ] = 0;
} else {
H[ (i*m) + j ] = 1;
}
}
}
for ( i = 0; i < m; i++ ) {
H[ i * m ] -= pow( h, i+1 );
H[ ((m-1) * m) + i ] -= pow( h, (m-i) );
}
H[ (m-1) * m ] += ( ( (2*h)-1 > 0 ) ? pow( (2*h)-1, m ) : 0 );
for ( i = 0; i < m; i++ ) {
for ( j = 0; j < m; j++ ) {
if ( i - j + 1 > 0 ) {
for ( g = 1; g <= i - j + 1; g++ ) {
H[ (i*m) + j ] /= g;
}
}
}
}
eH = 0;
mpow( H, eH, n );
s = Q[ ((k-1) * m) + k - 1 ];
for ( i = 1; i <= n; i++ ) {
s = s * i / n;
if ( s < 1e-140 ) {
s *= 1e140;
eQ -= 140;
}
}
s *= pow( 10, eQ );
return s;
/**
* Matrix exponentiation. Mutates Q matrix.
*
* @private
* @param {Float64Array} A - input matrix
* @param {number} eA - matrix power
* @param {number} n - number of variates
*/
function mpow( A, eA, n ) {
var eB;
var B;
var i;
if ( n === 1 ) {
for ( i = 0; i < m*m; i++ ) {
Q[ i ] = A[ i ];
eQ = eA;
}
return;
}
mpow( A, eA, floor( n/2 ) );
B = mmult( Q, Q );
eB = 2 * eQ;
if ( n % 2 === 0 ) {
for ( i = 0; i < m*m; i++ ) {
Q[ i ] = B[ i ];
}
eQ = eB;
} else {
Q = mmult( A, B );
eQ = eA + eB;
}
if ( Q[ (floor(m/2) * m) + floor(m/2) ] > 1e140 ) {
for ( i = 0; i < m*m; i++ ) {
Q[ i ] *= 1e-140;
}
eQ += 140;
}
}
/**
* Multiply matrices x and y.
*
* @private
* @param {Float64Array} x - first input matrix
* @param {Float64Array} y - second input matrix
* @returns {Float64Array} matrix product
*/
function mmult( x, y ) {
var i;
var j;
var k;
var s;
var z;
z = new Float64Array( m * m );
for ( i = 0; i < m; i++) {
for ( j = 0; j < m; j++ ) {
s = 0;
for ( k = 0; k < m; k++ ) {
s += x[ (i*m) + k ] * y[ (k*m) + j ];
z[ (i*m) + j ] = s;
}
}
}
return z;
}
}
// EXPORTS //
module.exports = pKolmogorov;